Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 91 - 95 of 95

Full-Text Articles in Engineering

Gradient-Enriched Finite Element Methodology For Axisymmetric Problems, C. Bagni, H. Askes, E. C. Aifantis Apr 2017

Gradient-Enriched Finite Element Methodology For Axisymmetric Problems, C. Bagni, H. Askes, E. C. Aifantis

Michigan Tech Publications

Due to the axisymmetric nature of many engineering problems, bi-dimensional axisymmetric finite elements play an important role in the numerical analysis of structures, as well as advanced technology micro/nano-components and devices (nano-tubes, nano-wires, micro-/nano-pillars, micro-electrodes). In this paper, a straightforward C0-continuous gradient-enriched finite element methodology is proposed for the solution of axisymmetric geometries, including both axisymmetric and non-axisymmetric loads. Considerations about the best integration rules and an exhaustive convergence study are also provided along with guidances on optimal element size. Moreover, by applying the present methodology to cylindrical bars characterised by a circumferential sharp crack, the ability of the present …


Mos2 As A Co-Catalyst For Photocatalytic Hydrogen Production From Water, Bing Han, Yun Hang Hu Nov 2016

Mos2 As A Co-Catalyst For Photocatalytic Hydrogen Production From Water, Bing Han, Yun Hang Hu

Michigan Tech Publications

Solar-to-hydrogen conversion based on photocatalytic water splitting is a promising pathway for sustainable hydrogen production. The photocatalytic process requires highly active, inexpensive, and earth-abundant materials as photocatalysts. As a presentative layer-structured transition metal dichalcogenides, molybdenum disulfide (MoS2) is attracting intensive attention due to its unique electro and photo properties. In this article, we comprehensively review the recent research efforts of exploring MoS2 as a co-catalyst for photocatalytic hydrogen production from water, with emphasis on its combination with CdS, CdSe, graphene, carbon nitride, TiO2, and others. It is shown that MoS2–semiconductor composites are promising photocatalysts for hydrogen evolution from water under …


Lengthscale Effects On Exchange Coupling In Co-Pt L10 + L12 Nanochessboards, Eric P. Vetter, Liwei D. Geng, Priya Ghatwai, Dustin A. Gilbert, Yongmei M. Jin, William A. Soffa, Jerrold A. Floro Sep 2016

Lengthscale Effects On Exchange Coupling In Co-Pt L10 + L12 Nanochessboards, Eric P. Vetter, Liwei D. Geng, Priya Ghatwai, Dustin A. Gilbert, Yongmei M. Jin, William A. Soffa, Jerrold A. Floro

Michigan Tech Publications

The Co-Pt nanochessboard is a quasi-periodic, nanocomposite tiling of L10 and L12 magnetic phases that offers a novel structure for the investigation of exchange coupling, relevant to permanent magnet applications. Periodicity of the tiling is controlled by the rate of cooling through the eutectoid isotherm, resulting in control over the L10-L12 exchange coupling. First order reversal curve analysis reveals a transition from partial coupling to nearly complete exchange-coupling in a Co40.2Pt59.8 nanochessboard structured alloy as the periodicity is reduced below the critical correlation length. Micromagnetic simulations give insights into how exchange coupling manifests in the tiling, and its impact on …


High-Efficiency Solar-Powered 3-D Printers For Sustainable Development, Jephias Gwamuri, Dhiogo Franco, Khalid Khan, Lucia Gauchia, Joshua M. Pearce Jan 2016

High-Efficiency Solar-Powered 3-D Printers For Sustainable Development, Jephias Gwamuri, Dhiogo Franco, Khalid Khan, Lucia Gauchia, Joshua M. Pearce

Michigan Tech Publications

The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic …


The Case For Open Source Appropriate Technology, Joshua M. Pearce Jun 2012

The Case For Open Source Appropriate Technology, Joshua M. Pearce

Michigan Tech Publications

Much of the widespread poverty, environmental desecration, and waste of human life seen around the globe could be prevented by known (to humanity as a whole) technologies, many of which are simply not available to those that need it. This lack of access to critical information for sustainable development is directly responsible for a morally and ethically unacceptable level of human suffering and death. A solution to this general problem is the concept of open source appropriate technology or OSAT, which refers to technologies that provide for sustainable development while being designed in the same fashion as free and open …