Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

2007

Lawrence Berkeley National Laboratory

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Platinum Nanoparticle Shape Effects On Benzene Hydrogenation Selectivity, Kaitlin M. Bratlie, Hyunjoo Lee, Kyriakos Komvopoulos, Peidong Yang, Gabor A. Somorjai Oct 2007

Platinum Nanoparticle Shape Effects On Benzene Hydrogenation Selectivity, Kaitlin M. Bratlie, Hyunjoo Lee, Kyriakos Komvopoulos, Peidong Yang, Gabor A. Somorjai

Kaitlin M. Bratlie

Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through a weak C-HâââPt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles. These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for …


A Sum Frequency Generation Vibrational Spectroscopic Study Of The Adsorption And Reactions Of C6 Hydrocarbons At High Pressures On Pt(100), Kaitlin M. Bratlie, Gabor A. Somorjai May 2007

A Sum Frequency Generation Vibrational Spectroscopic Study Of The Adsorption And Reactions Of C6 Hydrocarbons At High Pressures On Pt(100), Kaitlin M. Bratlie, Gabor A. Somorjai

Kaitlin M. Bratlie

Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the adsorption geometries and surface reactions of various C6 hydrocarbons (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) on Pt(100). At 300 K and in the presence of excess hydrogen, n-hexane, 3-methylpentane, and 2-methylpentane adsorb molecularly on Pt(100) mostly in “flat-lying” conformations. Upon heating the metal surface to 450 K, the molecules underwent dehydrogenation to form new surface species in “standing-up” conformations, such as hexylidyne and metallacyclic species.