Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Rebecca Cademartiri

2007

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Non-Destructive Horseradish Peroxidase Immobilization In Porous Silica Nanoparticles, Rebecca Voss, Michael A. Brook, Jordan Thompson, Yang Chen, Robert H. Pelton, John D. Brennan Sep 2007

Non-Destructive Horseradish Peroxidase Immobilization In Porous Silica Nanoparticles, Rebecca Voss, Michael A. Brook, Jordan Thompson, Yang Chen, Robert H. Pelton, John D. Brennan

Rebecca Cademartiri

The preparation of protein doped silica particles is impeded by the difficulty of incorporating proteins within the silica mesostructure under conditions that do not lead to denaturation. Herein, the synthesis of spherical silica particles (diameter 150 nm–550 nm) under protein friendly conditions in a one step process is described. Diglyceroxysilane (DGS) was reacted in ethanol and methanol-free conditions in pure water or in buffer solutions with or without the presence of additional glycerol. Stabilization of the particles, consistent with steric stabilization, was obtained using poly(ethylene glycol) (PEG) of various molecular weights and with various end groups, including allyl and (CH2)3Si(OEt)3 …


Organosilicas With Chiral Bridges And Self-Generating Mesoporosity, Andreas Ide, Rebecca Voss, Gudrun Scholz, Geoffrey A. Ozin, Markus Antonietti, Arne Thomas May 2007

Organosilicas With Chiral Bridges And Self-Generating Mesoporosity, Andreas Ide, Rebecca Voss, Gudrun Scholz, Geoffrey A. Ozin, Markus Antonietti, Arne Thomas

Rebecca Cademartiri

Amine-functionalized, chiral mesoporous organosilicas were prepared from a rationally designed precursor, which combines the functions of a network builder, a chiral latent functional group, and a porogen in one molecule. The precursors are formed by a convenient enantioselective hydroboration using (S)-monoisopinocampheylborane on an ethylene-bridged silica precursor. These precursors do self-organize when hydrolysis of their inorganic moiety takes place via an aggregation of their organic moiety into hydrophobic domains. After a condensation−ammonolysis sequence mesoporous organosilicas functionalized with chiral amine groups are obtained, with the complete chiral functionalities located at the pore wall surface and therefore accessible to chemical processes. The pore …