Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Logic Foundry: Rapid Prototyping For Fpga-Based Dsp Systems, Gary Spivey Jan 2003

Logic Foundry: Rapid Prototyping For Fpga-Based Dsp Systems, Gary Spivey

Faculty Publications - Department of Electrical Engineering and Computer Science

We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal processing systems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in the integration of the various components, we have proposed a system that targets the following four areas of integration: design flow integration, component integration, platform integration, and software integration. Using the Logic Foundry, a system can be easily specified, and then automatically constructed and integrated with system level software.


Aspects Of Control For A Parafoil And Payload System, Nathan Slegers, Mark Costello Jan 2003

Aspects Of Control For A Parafoil And Payload System, Nathan Slegers, Mark Costello

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

A parafoil controlled by parafoil brake deflection offers a lightweight and space-efficient control mechanism for autonomous placement of air-dropped payloads to specified ground coordinates. The work reported here investigates control issues for a parafoil and payload system with left and right parafoil brakes used as the control mechanism. It is shown that parafoil and payload systems can exhibit two basic modes of lateral control, namely,roll and skid steering. These two modes of lateral steering generate lateral response in opposite directions. For example, a roll steer configuration turns left when the right parafoil brake is activated, whereas a skid steer configuration …


Comparison Of Measured And Simulated Motion Of A Controllable Parafoil And Payload System, Nathan Slegers, Mark Costello Jan 2003

Comparison Of Measured And Simulated Motion Of A Controllable Parafoil And Payload System, Nathan Slegers, Mark Costello

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

For parafoil and payload aircraft, control is affected by changing the length of several rigging lines connected to the outboard side and rear of the parafoil leading to complex changes in the shape and orientation of the lifting surface. Flight mechanics of parafoil and payload aircraft most often employ a 6 or 9 DOF representation with the canopy modeled as a rigid body during flight. The effect of control inputs is idealized by the deflection of parafoil brakes on the left and right side of the parafoil. Using a small parafoil and payload aircraft, glide rates and turn performance were …


On The Use Of Rigging Angle And Canopy Tilt For Control Of A Parafoil And Payload System, Nathan Slegers, Mark Costello Jan 2003

On The Use Of Rigging Angle And Canopy Tilt For Control Of A Parafoil And Payload System, Nathan Slegers, Mark Costello

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Controllable parafoil and payload aircraft are controlled with downward deflection of left and right parafoil brakes. Lateral control is obtained by differential deflection while longitudinal control is created by collective deflection of the left and right side parafoil brakes. The work reported considers an alternative method to control parafoil and payload air vehicles by tilting the parafoil canopy for lateral control and changing rigging angle for longitudinal control. Using a nonlinear 9 degree of freedom simulation model, it is shown that canopy tilt provides a powerful lateral control mechanism and rigging angle provides a viable longitudinal control mechanism.


Application Of Dynamic System Identification To Timber Bridges, S T. Peterson, D I. Mclean, David Pollock Jan 2003

Application Of Dynamic System Identification To Timber Bridges, S T. Peterson, D I. Mclean, David Pollock

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

A method of global nondestructive evaluation for identifying local damage and decay in timber beams was developed in previous analytical studies and verified experimentally using simply supported beams in the laboratory. The method employs experimental modal analysis and an algorithm that monitors changes in modal strain energy between the mode shapes of a damaged structure with respect to the undamaged structure. A simple three-girder bridge was built and tested in a laboratory to investigate the capability and limitations of the method for detecting damage in a multimember timber structure. The laboratory tests showed that the method can correctly detect and …


Cool Flames In Propane-Oxygen Premixtures At Low And Intermediate Temperatures At Reduced-Gravity, Howard Pearlman, Michael R. Foster, Devrez Karabacak Jan 2003

Cool Flames In Propane-Oxygen Premixtures At Low And Intermediate Temperatures At Reduced-Gravity, Howard Pearlman, Michael R. Foster, Devrez Karabacak

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

No abstract provided.