Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Embry-Riddle Aeronautical University

Space Vehicles

Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 99

Full-Text Articles in Engineering

State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays Apr 2024

State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays

Doctoral Dissertations and Master's Theses

Resiliency in multi-agent system navigation is reliant on the inherent ability of the system to withstand, overcome, or recover from adverse conditions and disturbances. In large part, resiliency is achieved through reducing the impact of critical failure points to the success and/or performance of the system. In this view, decentralized multi-agent architectures have become an attractive solution for multi-agent navigation, but decentralized architectures place the burden of information acquisition directly on the agents themselves. In fact, the design of distributed estimators has been a growing interest to enable complex multi-sensor/multi-agent tasks. In such scenarios, it is important that each local …


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro Jan 2024

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.


Evaluating The Effectiveness Of Game-Based Virtual Reality In Satellite Ground Control Operations Education And Training, Lana Laskey, Joseph R. Keebler, Paul M. Cairns, Geovanny Lopez Jan 2024

Evaluating The Effectiveness Of Game-Based Virtual Reality In Satellite Ground Control Operations Education And Training, Lana Laskey, Joseph R. Keebler, Paul M. Cairns, Geovanny Lopez

International Journal of Aviation, Aeronautics, and Aerospace

There is increased global demand for satellite amenities such as navigation, communications, weather reporting, disaster management, agricultural operations, or humanitarian assistance. The growing demand for satellite technology amplifies the need for highly trained satellite operators. Traditional simulation training methods typically utilize two-dimensional computer displays. However, training approaches involving game-based instruction and immersive virtual reality have shown benefits when integrated with complex disciplines and may provide an advanced training alternative for satellite operators. Game-based instruction enhances user motivation and cognitive engagement, while immersive virtual reality promotes user presence and prolonged cognitive engagement. The combination of these two training methods, noted as …


Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente Dec 2023

Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente

Doctoral Dissertations and Master's Theses

This thesis presents recent findings regarding the performance of an intelligent architecture designed for spacecraft fault estimation. The approach incorporates a collection of systematically organized autoencoders within a Bayesian framework, enabling early detection and classification of various spacecraft faults such as reaction-wheel damage, sensor faults, and power system degradation.

To assess the effectiveness of this architecture, a range of performance metrics is employed. Through extensive numerical simulations and in-lab experimental testing utilizing a dedicated spacecraft testbed, the capabilities and accuracy of the proposed intelligent architecture are analyzed. These evaluations provide valuable insights into the architecture's ability to detect and classify …


Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Nov 2023

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

Machine learning regression techniques have shown success at feedback control to perform near-optimal pinpoint landings for low fidelity formulations (e.g. 3 degree-of-freedom). Trajectories from these low-fidelity landing formulations have been used in imitation learning techniques to train deep neural network policies to replicate these optimal landings in closed loop. This study details the development of a near-optimal, neural network feedback controller for a 6 degree-of-freedom pinpoint landing system. To model disturbances, the problem is cast as either a multi-phase optimal control problem or a triple single-phase optimal control problem to generate examples of optimal control through the presence of disturbances. …


Orbital Debris Mitigation: Exploring Cubesat Drag Sail Technology, Robinson Raphael Oct 2023

Orbital Debris Mitigation: Exploring Cubesat Drag Sail Technology, Robinson Raphael

Student Works

In an era marked by remarkable advancements in space exploration and research, the advent of satellite technology has contributed accordingly to the lives of people here on Earth. Through applications that tie into broadband connectivity, weather forecasting, disaster management, etc., the occupancy in orbital domains like Low-Earth Orbit (LEO) only continues to grow. However, the presence of orbital debris emerges as a significant concern, posing threats to both operational satellites and future space missions. Resulting as a consequence due to decades of activities since the launch of Sputnik 1 in 1957, as more countries ventured into space so did the …


State Space Modeling And Estimation Of Flexible Structure Using The Theory Of Functional Connections, Carlo Lombardi, Riccardo Bevilacqua Oct 2023

State Space Modeling And Estimation Of Flexible Structure Using The Theory Of Functional Connections, Carlo Lombardi, Riccardo Bevilacqua

Student Works

In this work, we present a novel method to model the dynamics of a continuous structure based on measurements taken at discrete points. The method is conceived to provide new instruments to address the problem of flexible dynamics modeling in a spacecraft, where an effective mathematical representation of the non-rigid behavior of the is of critical importance in the design of an effective and reliable attitude estimation and control system. Both the measurements and the model that describes the structure can be affected by uncertainty. The purpose of the developed method is to estimate the position and the velocity of …


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Oct 2023

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow Jul 2023

The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow

Doctoral Dissertations and Master's Theses

Rocket Based Combined Cycle (RBCC) engines have been theorized as a possible means of powering launch vehicles and high-speed atmospheric vehicles. By incorporating aspects of both air-breathing and rocket propulsion, RBCC engines promise up to a 230 % increase in specific impulse over traditional chemical rocket propulsion by entraining a secondary flow of atmospheric air and mixing it with the exhaust of a rocket motor. Students within the Embry-Riddle Future Space Explorers and Developers Society (ERFSEDS) identified a
problem of excessive heating and structural failure of the mixing duct during launch and transonic flight of a student-built flight test vehicle. …


An Online Adaptive Machine Learning Framework For Autonomous Fault Detection, Nolan Coulter May 2023

An Online Adaptive Machine Learning Framework For Autonomous Fault Detection, Nolan Coulter

Doctoral Dissertations and Master's Theses

The increasing complexity and autonomy of modern systems, particularly in the aerospace industry, demand robust and adaptive fault detection and health management solutions. The development of a data-driven fault detection system that can adapt to varying conditions and system changes is critical to the performance, safety, and reliability of these systems. This dissertation presents a novel fault detection approach based on the integration of the artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM). Together, these algorithms create the Artificial Immune System augemented Online Support Vector Machine (AISOSVM).

The AISOSVM framework combines the strengths of the AIS and …


Nonlinear Dynamics Analysis And Control Of Space Vehicles With Flexible Structures, Marco Fagetti Apr 2023

Nonlinear Dynamics Analysis And Control Of Space Vehicles With Flexible Structures, Marco Fagetti

Doctoral Dissertations and Master's Theses

Space vehicles that implement hardware such as antennas, solar panels, and other extended appendages necessary for their respective missions must consider the nonlinear rotational and vibrational dynamics of these flexible structures. Formulation and analysis of these flexible structures must account for the rigid-flexible coupling present in the system dynamics for stability analysis and control design. The system model is represented by a flexible appendage attached to a central rigid body, where the flexible appendage is modeled as a cantilevered Euler-Bernoulli beam. Discretization techniques, such as the assumed modes method and the finite element method, are used to model the coupled …


Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Enrique Mendoza Zambrano, Riccardo Bevilacqua Jan 2023

Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Enrique Mendoza Zambrano, Riccardo Bevilacqua

Student Works

In the interest of exploiting natural forces for propellant-less spacecraft missions, this investigation proposes an adaptive control strategy to account for unknown parameters in the dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control law along with integral concurrent learning is suggested to accomplish and prove global exponential tracking of the estimated parameters and states of interest, without satisfying the common persistence of excitation condition, which in most nonlinear systems cannot be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun to account for uncertainty and variation over time in this value. To …


Dual Quaternion Relative Dynamics For Gravity Recovery Missions, Ryan Kinzie, Riccardo Bevilacqua, Seo Dongeun Jan 2023

Dual Quaternion Relative Dynamics For Gravity Recovery Missions, Ryan Kinzie, Riccardo Bevilacqua, Seo Dongeun

Student Works

A dual quaternion modeling approach is compared to traditional modeling methods for formation flying spacecraft utilized for gravity recovery missions. A modeling method that has traditionally been used for gravity recovery missions is presented which models the motion of two formation flying spacecraft and a test mass. This is followed by the dual quaternion-based formulation for the equations of motion of the twelve degree-of-freedom coupled relative dynamics of formation flying spacecraft and a test mass. Lastly, utilizing data products from the Gravity Recovery and Climate Experiment Follow-On mission, a comparison of these two modeling methods is presented which proves the …


Experimental Validation Of Inertia Parameters And Attitude Estimation Of Uncooperative Space Targets Using Solid State Lidar, Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano, Michele Grassi, Spencer John, Hancheol Cho, Riccardo Bevilacqua Jan 2023

Experimental Validation Of Inertia Parameters And Attitude Estimation Of Uncooperative Space Targets Using Solid State Lidar, Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano, Michele Grassi, Spencer John, Hancheol Cho, Riccardo Bevilacqua

Student Works

This paper presents an experimental activity aimed at assessing performance of techniques for inertia and attitude parameters estimation of an uncooperative but known space target. The adopted experimental set-up includes a scaled-down 3D printed satellite mock-up, a spherical air bearing and a low-cost solid-state LIDAR. The experimental facility also comprises a motion capture system to obtain a benchmark of the pose (position and attitude) parameters and an ad-hoc designed passive balancing system to keep the centre of mass as close as possible to the centre of rotation. The LIDAR-based 3D point clouds, collected while the target rotates on the spherical …


Evaluating System Usability, Workload Suitability, And User Experience Of Game-Based Virtual Reality In Spaceflight Education And Training, Lana Laskey , M.S., Joseph R. Keebler , Ph.D. Jan 2023

Evaluating System Usability, Workload Suitability, And User Experience Of Game-Based Virtual Reality In Spaceflight Education And Training, Lana Laskey , M.S., Joseph R. Keebler , Ph.D.

Journal of Aviation/Aerospace Education & Research

Game-based instruction and immersive virtual reality are enhanced pedagogical methods beneficial in training environments involving complex disciplines, ranging from medical applications to construction engineering technology. This study investigated the use of game-based virtual reality (GBVR) when applied to the complex field of spaceflight education and training. As modern society places increasing demand on space-based amenities, the need for proficient satellite operators will also increase, requiring more accessible and advanced training options. Satellite ground control training scenarios, immersed in the GBVR environment, were developed and deployed to university student participants. Multiple validated scales were employed to measure the GBVR system regarding …


Evaluating System Usability, Workload Suitability, And User Experience Of Game-Based Virtual Reality In Spaceflight Education And Training, Lana Laskey, Joseph Keebler Dec 2022

Evaluating System Usability, Workload Suitability, And User Experience Of Game-Based Virtual Reality In Spaceflight Education And Training, Lana Laskey, Joseph Keebler

National Training Aircraft Symposium (NTAS)

Game-based instruction and immersive virtual reality are enhanced pedagogical methods beneficial in training environments involving complex disciplines, ranging from medical applications to construction engineering technology. This study investigated the use of game-based virtual reality (GBVR) when applied to the complex discipline of spaceflight education and training. As modern society places increasing demand on space-based amenities, the need for proficient satellite operators will also increase, requiring more accessible and more advanced training options. Spaceflight training scenarios, immersed in the GBVR environment, were developed and deployed to university student participants. Multiple validated scales were used to measure the GBVR system regarding three …


Health Management And Adaptive Control Of Distributed Spacecraft Systems, Tatiana Alejandra Gutierrez Martinez Dec 2022

Health Management And Adaptive Control Of Distributed Spacecraft Systems, Tatiana Alejandra Gutierrez Martinez

Doctoral Dissertations and Master's Theses

As the development of challenging missions like on-orbit construction and collaborative inspection that involve multi-spacecraft systems increases, the requirements needed to improve post-failure safety to maintain the mission performance also increases, especially when operating under uncertain conditions. In particular, space missions that involve Distributed Spacecraft Systems (e.g, inspection, repairing, assembling, or deployment of space assets) are susceptible to failures and threats that are detrimental to the overall mission performance. This research applies a distributed Health Management System that uses a bio-inspired mechanism based on the Artificial Immune System coupled with a Support Vector Machine to obtain an optimized health monitoring …


Spacecraft Systems & Navigation, Christopher Vanacore Nov 2022

Spacecraft Systems & Navigation, Christopher Vanacore

Student Works

This textbook is steered towards higher educational course entailed in Commercial Space Operations. This textbook will be covering in detail Orbital Satellites, and Spacecraft. These topics are discussed according to their application, design, and environment. The power system, shielding and communication systems are reviewed along with their missions, space, environment and limitations. Any vehicle, whether manned or unmanned, intended for space travel is a spacecraft. A spacecraft's required systems and equipment depend on the information it will acquire and the tasks it will perform. Although their levels of sophistication vary widely, they re all subject to the harsh conditions of …


Space Cargo: Ultra-Fast Delivery On Earth –Potential Of Using Suborbital Space Vehicles For The Transportation Of Cargo, Robert O. Walton, Robert A. Goehlich Jan 2022

Space Cargo: Ultra-Fast Delivery On Earth –Potential Of Using Suborbital Space Vehicles For The Transportation Of Cargo, Robert O. Walton, Robert A. Goehlich

International Journal of Aviation, Aeronautics, and Aerospace

No abstract provided.


State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr Dec 2021

State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr

Doctoral Dissertations and Master's Theses

Today, the exploration and exploitation of space continues to become a more common occurrence. All types of spacecraft (S/C) utilize various types of thermal management solutions to mitigate the effects of thermal loading from the unforgiving vacuum of space. Without an appropriately designed thermal system, components on-board the S/C can experience failure or malfunction due to fluctuations in temperatures either beyond the designed operational parameters or unstable oscillating temperatures. The purpose of this study is to perform a comprehensive review of technologies available today that are being used for thermal management onboard S/C in addition to investigating the means to …


Optimal Sizing And Control Of Hybrid Rocket Vehicles, Srija Ryakam Dec 2021

Optimal Sizing And Control Of Hybrid Rocket Vehicles, Srija Ryakam

Doctoral Dissertations and Master's Theses

In the present work, a genetic algorithm is used to optimize a hybrid rocket engine in order to minimize the propellant required for a specific mission. In a hybrid rocket engine, the mass flow rate of the oxidizer can be throttled to enhance the performance of the rocket. First, an analysis of the internal ballistics and the ascent trajectory has been carried out for different mass flow rates of the oxidizer as a function of time, for a fixed amount of oxidizer, in order to study the effect of throttling. Two equivalent problems are considered: in the first problem the …


Adaptive-Optimal Control Of Spacecraft Near Asteroids, Madhur Tiwari Jun 2021

Adaptive-Optimal Control Of Spacecraft Near Asteroids, Madhur Tiwari

Doctoral Dissertations and Master's Theses

Spacecraft dynamics and control in the vicinity of an asteroid is a challenging and exciting problem. Currently, trajectory tracking near asteroid requires extensive knowledge about the asteroid and constant human intervention to successfully plan and execute proximity operation. This work aims to reduce human dependency of these missions from a guidance and controls perspective. In this work, adaptive control and model predictive control are implemented to generating and tracking obstacle avoidance trajectories in asteroid’s vicinity.

Specifically, direct adaptive control derived from simple adaptive control is designed with e modification to track user-generated trajectories in the presence of unknown system and …


Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison Jan 2021

Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison

International Journal of Aviation, Aeronautics, and Aerospace

The aerospike engine was first devised in the early 1960s where it provided new means of reaching orbit in a single stage. The paper aimes to demonstrate the viability of the technology by showcasing the increased nozzle thrust efficiency over the conventional bell nozzle. Various truncations were applied to the nozzle and each was subjected to two conditions, an over-expansion and near optimum condition. The nozzle contour was developed using the simple approximation method and was chosen to replicate that of the XRS-2200. This anchored the data, thereby validating the computational fluid dynamics (CFD) simulation. Simulations were completed for at …


Aeroacoustics Of Supersonic Jet Interacting With Solid Surfaces And Its Suppression, Seyyed Saman Salehian Aug 2020

Aeroacoustics Of Supersonic Jet Interacting With Solid Surfaces And Its Suppression, Seyyed Saman Salehian

Doctoral Dissertations and Master's Theses

The noise generated by supersonic jet is of primary interest in the high-speed flight. In several flight conditions jet exhaust of the propulsion system interacts with solid surfaces. For example, jet impingement on ground for a rocket lift-off, or interactions influenced by the integration of the engine with the airframe. Such complex applications require consideration of the role of acoustic-surface interactions on the noise generation of the jet and its radiation. Numerical analysis of supersonic jet noise involved in these scenarios is investigated by employing Hybrid Large Eddy Simulation – Unsteady Reynolds Averaged Simulation approach to model turbulence.

First, the …


Dynamic And Control Of Air-Bearing Spacecraft Simulator, Jacob Joseph Korczyk Apr 2020

Dynamic And Control Of Air-Bearing Spacecraft Simulator, Jacob Joseph Korczyk

Doctoral Dissertations and Master's Theses

An air bearing is being designed as a spacecraft rotational motion simulator, featuring the Sawyer Robot and its control box. The objective is to maneuver the robot as desired, performing operations specific to on-orbit servicing operations while maintaining stability of the system. Before the control can be designed, the dynamics of the platform and the robot must be modeled. The dynamics of the robot can be derived utilizing a Newton-Euler recursive approach. By beginning with a simple pendulum, then adding links (degrees of freedom) to more closely resemble the Sawyer arm, the equations of motion for the robot can be …


Constrained Motion Analysis And Control Of Spacecraft Asteroid Hovering With Formulation Extension In Geometric Mechanics Framework, Wesley Thomas Stackhouse Apr 2020

Constrained Motion Analysis And Control Of Spacecraft Asteroid Hovering With Formulation Extension In Geometric Mechanics Framework, Wesley Thomas Stackhouse

Doctoral Dissertations and Master's Theses

This thesis studies the constrained motion for a spacecraft hovering over an asteroid, where the Udwadia-Kalaba (UK) formulation is applied for nominal control, and an adaptive controller is developed to account for unknowns in the dynamics. Then, the formulation is extended in the geometric mechanics framework to account for rigid body spacecraft asteroid hovering. Constraints are developed and applied for fully constrained and under-constrained asteroid hovering. The fully constrained solutions provided by the UK fundamental equation are compared to an optimal linear quadratic regulator. An adaptive controller is designed using the UK fundamental equation as a basis in the form …


Launch Vehicle Design For The Far-Mars Competition, Matthew Boban, Bryce Smoldon, Jonathan Noble, Stefan Johnson, Maxwell Kauker, Nicholas Wright, Andrew Lucka Mar 2020

Launch Vehicle Design For The Far-Mars Competition, Matthew Boban, Bryce Smoldon, Jonathan Noble, Stefan Johnson, Maxwell Kauker, Nicholas Wright, Andrew Lucka

Discovery Day - Prescott

Zenith Propulsion is constructing a launch vehicle, named Altair, to compete in a competition hosted by the Friends of Amateur Rocketry (FAR) and the Mars Society. The objective for Zenith Propulsion is to design, build and launch Altair to a qualifying altitude of 30,000 feet in the FAR-Mars competition. Altair will utilize a rocket engine that has been in development at Embry-Riddle Aeronautical University’s Prescott campus since late 2018. This engine, named Janus, uses liquid oxygen and Jet-A and is designed to deliver 1000 lbf of thrust. Altair will be launched from the FAR launch site, in Mojave, CA, on …


Experimental Evaluation Of Strength Degradation Temperature For Carbon Epoxy Filament Wound Composite, Jai Krishna Mishra, Surya Prakash Rao Ch Dr, Subhash Chandra Bose P Dr, Kishore Nath N Dr, Rama Rao Golla Mr Jan 2020

Experimental Evaluation Of Strength Degradation Temperature For Carbon Epoxy Filament Wound Composite, Jai Krishna Mishra, Surya Prakash Rao Ch Dr, Subhash Chandra Bose P Dr, Kishore Nath N Dr, Rama Rao Golla Mr

International Journal of Aviation, Aeronautics, and Aerospace

Polymeric composites have been widely used in various structural and thermal aerospace applications. Polymeric composites having high strength and high modulus reinforcement are ideally suited for lot of critical aerospace applications as structure is designed with high specific strength and high specific modulus. In case of launch vehicles/ missile one such application is design and manufacturing of solid rocket motor casing with polymeric composites as it give high performance and reduces inert weight of propulsion system. The high specific strength and high specific modulus of composite materials makes it ideal choice for designing the composite rocket motor case (CRMC). These …


Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga Feb 2019

Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga

Space Traffic Management Conference

The exponential rise in small-satellites and CubeSats in Low Earth Orbit (LEO) poses important challenges for future space traffic management. At altitudes of 600 km and lower, aerodynamic drag accelerates de-orbiting of satellites. However, placement of satellites at higher altitudes required for constellations pose important challenges. The satellites will require on-board propulsion to lower their orbits to 600 km and let aerodynamic drag take-over. In this work we analyze solutions for de-orbiting satellites at altitudes of up to 3000 km. We consider a modular robotic de-orbit device that has stowed volume of a regular CubeSat. The de-orbit device would be …