Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Prove Primary Battery Structure, John D. Burkhart, Andy Mccormick, Ryan Yu, Soren Barclay Jun 2023

Prove Primary Battery Structure, John D. Burkhart, Andy Mccormick, Ryan Yu, Soren Barclay

Mechanical Engineering

In conjunction with Prototype Vehicle (PROVE) Laboratory, our group designed, manufactured, and tested a prototype structure to house the battery boxes for PROVE’s endurance vehicle. Our structure was designed to support the batteries during normal use, and in the event of a front crash. Our design is comprised of a secondary composite box to house the battery boxes, a bottom plate to affix the secondary box to the chassis floor, a horizontal plate fastened to the chassis, and a brace structure welded to the chassis. From the outset, we chose to use a secondary box, the primary battery boxes must …


Effects Of Corrugations On Stiffness Properties Of Composite Beams For Structural Applications, Jane Xiao Jun 2019

Effects Of Corrugations On Stiffness Properties Of Composite Beams For Structural Applications, Jane Xiao

Master's Theses

Composites have high strength-to-weight ratios, which is particularly desired for applications with weight restrictions. Common composite materials such as carbon fiber reinforced plastic (CF) and fiber glass reinforced plastic (FG) were used in this research. While composite materials possess high stiffness and strength properties, the stiffness of composite laminates may be maximized by changing the geometry. By adding corrugations, the flexural stiffness is increased in one direction compared to the stiffness of a flat part with the same amount of material. Thus, stiffness increases without a change in weight. The primary goal of this research was to investigate the stiffness …


Development Of Low Cost, Environmentally Friendly And High Strength Carbon Foams From Bread And Cake, Laura Mountain-Tuller Jun 2018

Development Of Low Cost, Environmentally Friendly And High Strength Carbon Foams From Bread And Cake, Laura Mountain-Tuller

Materials Engineering

Carbon foam is a high niche material that consists of a highly porous, three-dimensional cellular network that is characterized by extremely high strength-to-weight ratios and low thermal conductivity. Due to these properties, carbon foams excel in structural and thermal applications, especially in the aerospace industry. Typically, carbon foams are formed through a heating process called pyrolysis of polymer precursors with high carbon content. This process is done at high temperatures in an oxygen free environment. These precursors are expensive to make and use toxic chemicals to produce, therefore, there is a push to find an environmentally friendly and cost-effective method …


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the …


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell Dec 2016

Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell

Mechanical Engineering

The following final design report outlines the design and fabrication of a carbon fiber compression molded sunglasses case. It intends to guide the development of a future lab activity for a composites undergraduate course at Cal Poly – San Luis Obispo. The activity aims to support an educational investigation in "out-of-autoclave" composites manufacturing methods, such as compression molding, which offer some key benefits over autoclave molding. The methodology behind the creation of a conceptual design, an initial prototype, and a final product is laid out in detail below.


Carbon Articulating Backpack Spine, Salvatore Monforte Iii, Darci Lawrence, Savan Patel Dec 2015

Carbon Articulating Backpack Spine, Salvatore Monforte Iii, Darci Lawrence, Savan Patel

Mechanical Engineering

In the field, firefighters and Urban Search and Rescue (USAR) personnel need to transport variable loads efficiently, safely, and comfortably while simultaneously performing certain physical tasks. Current models of external and internal framed backpacks distribute the load of a pack efficiently, but do not allow for the natural movement of the wearer. Wolfpack Gear, Inc. proposed the need for a system which both effectively carries a load and allows for the unhindered natural movement of the user. The goal of this project was to design, build, and test an articulating backpack support system. The first stage of the project comprised …


Carbon Fiber Monocoque Development For A Formula Sae Racecar, Andrew Cunningham, Andrew Ferrell, Matthew Lee, Tony Loogman Jun 2015

Carbon Fiber Monocoque Development For A Formula Sae Racecar, Andrew Cunningham, Andrew Ferrell, Matthew Lee, Tony Loogman

Mechanical Engineering

Monocoque development of the 2015 Cal Poly Formula SAE racecar from design to competition.


Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith Dec 2013

Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith

Master's Theses

Mode I interlaminar fracture of 3k 8-Harness-Satin Carbon cloth, with identical fill and weft yarns, pre-impregnated with Newport 307 resin was investigated through the DCB test (ASTM D5528). Crack propagations along both the fill and weft yarns were considered for both post-bonded (co-bonded) and co-cured laminates. A patent-pending delamination insertion method was compared to the standard Teflon film option to assess its applicability to mode I fracture testing. The Modified Beam Theory, Compliance Calibration method, and Modified Compliance Calibration method were used for comparative purposes for these investigations and to evaluate the validity of the proposed Equivalent Stiffness (EQS) method. …


Wolfpack Gear Inc. Composite Frame Firefighter Backpack, Gabriel Mountjoy, Blair Ridings, Carl Drummond Buchenroth Nov 2012

Wolfpack Gear Inc. Composite Frame Firefighter Backpack, Gabriel Mountjoy, Blair Ridings, Carl Drummond Buchenroth

Mechanical Engineering

No abstract provided.


Composite Suspension For Formula Sae Vehicle, Reid Olsen, Andrew Bookholt, Eric Melchiori Jun 2010

Composite Suspension For Formula Sae Vehicle, Reid Olsen, Andrew Bookholt, Eric Melchiori

Mechanical Engineering

This senior project report describes how a redesign of the 2008 Cal Poly Formula SAE vehicle's suspension components was conducted using carbon fiber components.