Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Force Optimization And Flow Field Characterization From A Flapping Wing Mechanism, Nathaniel Stephen Naegle Oct 2012

Force Optimization And Flow Field Characterization From A Flapping Wing Mechanism, Nathaniel Stephen Naegle

Theses and Dissertations

Flapping flight shows promise for micro air vehicle design because flapping wings provide superior aerodynamic performance than that of fixed wings and rotors at low Reynolds numbers. In these flight regimes, unsteady effects become increasingly important. This thesis explores some of the unsteady effects that provide additional lift to flapping wings through an experiment-based optimization of the kinematics of a flapping wing mechanism in a water tunnel. The mechanism wings and flow environment were scaled to simulate the flight of the hawkmoth (Manduca sexta) at hovering or near-hovering speeds. The optimization was repeated using rigid and flexible wings …


Fiber Optic Sensor Interrogation Advancements For Research And Industrial Use, Wesley Mont Kunzler Mar 2011

Fiber Optic Sensor Interrogation Advancements For Research And Industrial Use, Wesley Mont Kunzler

Theses and Dissertations

Spectrally-based fiber optic sensors are a rapidly maturing technology capable of sensing several environmental parameters in environments that are unfitting to electrical sensors. However, the sensor interrogation systems for this type of sensors are not yet fit to replace conventional sensor systems. They lack the speed, compact size, and usability necessary to move into mainstream test and measurement. The Fiber Sensor Integrated Monitor (FSIM) technology leverages rapid optical components and parallel hardware architecture to move these sensors across the research threshold into greater mainstream use. By dramatically increasing speed, shrinking size, and targeting an interface that can be used in …


Construction Of Large Geo-Referenced Mosaics From Mav Video And Telemetry Data, Benjamin Kurt Heiner Jul 2009

Construction Of Large Geo-Referenced Mosaics From Mav Video And Telemetry Data, Benjamin Kurt Heiner

Theses and Dissertations

Miniature Aerial Vehicles (MAVs) are quickly gaining acceptance as a platform for performing remote sensing or surveillance of remote areas. However, because MAVs are typically flown close to the ground (1000 feet or less in altitude), their field of view for any one image is relatively small. In addition, the context of the video (where and at what orientation are the objects being observed, the relationship between images) is unclear from any one image. To overcome these problems, we propose a geo-referenced mosaicing method that creates a mosaic from the captured images and geo-references the mosaic using information from the …


Real-Time Wind Estimation And Video Compression Onboard Miniature Aerial Vehicles, Andres Felipe Rodriguez Perez Mar 2009

Real-Time Wind Estimation And Video Compression Onboard Miniature Aerial Vehicles, Andres Felipe Rodriguez Perez

Theses and Dissertations

Autonomous miniature air vehicles (MAVs) are becoming increasingly popular platforms for the collection of data about an area of interest for military and commercial applications. Two challenges that often present themselves in the process of collecting this data. First, winds can be a significant percentage of the MAV's airspeed and can affect the analysis of collected data if ignored. Second, the majority of MAV's video is transmitted using RF analog transmitters instead of the more desirable digital video due to the computational intensive compression requirements of digital video. This two-part thesis addresses these two challenges. First, this thesis presents an …


A Surveillance System To Create And Distribute Geo-Referenced Mosaics Using Suav Video, Evan D. Andersen Jun 2008

A Surveillance System To Create And Distribute Geo-Referenced Mosaics Using Suav Video, Evan D. Andersen

Theses and Dissertations

Small Unmanned Aerial Vehicles (SUAVs) are an attractive choice for many surveillance tasks. However, video from an SUAV can be difficult to use in its raw form. In addition, the limitations inherent in the SUAV platform inhibit the distribution of video to remote users. To solve the problems with using SUAV video, we propose a system to automatically create geo-referenced mosiacs of video frames. We also present three novel techniques we have developed to improve ortho-rectification and geo-location accuracy of the mosaics. The most successful of these techniques is able to reduce geo-location error by a factor of 15 with …


Low-Altitude Road Following, Using Strap-Down Cameras On Miniature Aerial Vehicles, Joseph M. Egbert Nov 2007

Low-Altitude Road Following, Using Strap-Down Cameras On Miniature Aerial Vehicles, Joseph M. Egbert

Theses and Dissertations

Miniature air vehicles (MAVs) are particularly well suited for short-distance, over-the-horizon, low-altitude surveillance and reconnaissance tasks. New camera and battery technologies have greatly increased a MAVs potential for these tasks. This thesis focuses on aerial surveillance of borders and roads, where a strap-down camera is used in-the-loop to track a border or road pathway. It is assumed that quality tracking requires that the pathway always remain in the footprint of the camera. The objective of this thesis is to explore roll-angle and altitude-above-ground-level constraints imposed on a bank-to-turn MAV due to the requirement to keep the pathway in the footprint …


Adaptive Quaternion Control For A Miniature Tailsitter Uav, Nathan B. Knoebel Aug 2007

Adaptive Quaternion Control For A Miniature Tailsitter Uav, Nathan B. Knoebel

Theses and Dissertations

The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles are accompanied with control challenges due to the two different flight regimes. Problems with the conventional attitude representation arise in estimation and control as the system departs from level flight conditions. Furthermore, changing dynamics and limitations in modeling and sensing give rise to significant attitude control design challenges. Restrictions in computation also …


Particle Filter Based Mosaicking For Forest Fire Tracking, Justin Mathew Bradley Jul 2007

Particle Filter Based Mosaicking For Forest Fire Tracking, Justin Mathew Bradley

Theses and Dissertations

Using autonomous miniature air vehicles (MAVs) is a cost-effective, simple method for collecting data about the size, shape, and location characteristics of a forest fire. However, noise in measurements used to compute pose (location and attitude) of the on-board camera leads to significant errors in the processing of collected video data. Typical methods using MAVs to track fires attempt to find single geolocation estimates and filter that estimate with subsequent observations. While this is an effective method of resolving the noise to achieve a better geolocation estimate, it reduces a fire to a single point or small set of points. …


Development Of Deployable Wings For Small Unmanned Aerial Vehicles Using Compliant Mechanisms, Steven D. Landon Jul 2007

Development Of Deployable Wings For Small Unmanned Aerial Vehicles Using Compliant Mechanisms, Steven D. Landon

Theses and Dissertations

Unmanned Air Vehicles (UAVs) have recently gained attention due to their increased ability to perform sophisticated missions with less cost and/or risk than their manned counterparts. This thesis develops approaches to the use of compliant mechanisms in the design of deployable wings for small UAVs. Although deployable wings with rigid-link mechanisms have been used in the past to maintain flight endurance while minimizing required storage volume, compliant mechanisms offer many advantages in manufacturability and potential space savings due to function sharing of components. A number of compliant, deployable wing concepts are generated and a classification system for them is formed. …


Cooperative Control Of Miniature Air Vehicles, Derek R. Nelson Aug 2005

Cooperative Control Of Miniature Air Vehicles, Derek R. Nelson

Theses and Dissertations

Cooperative control for miniature air vehicles (MAVs) is currently a highly researched topic. There are many application for which MAVs are well suited, including fire monitoring, surveillance and reconaissance, and search and rescue missions. All of these applications can be carried out more effictively by a team of MAVs than by a single vehicle. As technologies for microcontrollers and small sensors have improved so have the capabilities of MAVs. This improvement in MAV performance abilities increases the possibility for cooperative missions. The focus of this research was on cooperative timing missions. The issues faced when dealing with multi-MAV flight include …


Predicting Drag Polars For Micro Air Vehicles, Mark Elden Luke Nov 2003

Predicting Drag Polars For Micro Air Vehicles, Mark Elden Luke

Theses and Dissertations

Drag polars for three Micro Air Vehicles (MAVs) were measured at Reynolds numbers of 70,000, 50,000, 30,000, and 10,000 and compared to predictions generated using the classical approach. The MAVs tested had different configurations and aspect ratios varying from 1.2 to 1.6 and ratios of wetted surface area to planform area from 2.6 to 3.9.

A force balance was used to measure the lift and drag on the MAVs at angles of attack ranging from -5 degrees (or -10 degrees) to 10 degrees. The force balance allowed the MAVs to rotate in the pitching axis. The MAV angle of attack …