Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Optimal Defense Of High Value Airborne Assets, Isaac E. Weintraub Mar 2021

Optimal Defense Of High Value Airborne Assets, Isaac E. Weintraub

Theses and Dissertations

Optimal control theory and differential game theory is applied to the study of the defense of high value airborne assets, particularly in the case of a single threat such as an adversarial aircraft or missile. Rather than utilizing onboard defenses of the high value airborne asset, defense is proposed using a teamed unmanned combat air vehicle. The common scenario throughout this dissertation involves the defense of a high value airborne asset (evader) teamed with an unmanned combat vehicle (defender) against a single threat (pursuer). The unmanned combat air vehicle (defender), provides defense in one of two ways: kinetic or directed …


Design And Test Of An Autonomy Monitoring Service To Detect Divergent Behaviors On Unmanned Aerial Systems, Loay Y. Almannaei Jun 2020

Design And Test Of An Autonomy Monitoring Service To Detect Divergent Behaviors On Unmanned Aerial Systems, Loay Y. Almannaei

Theses and Dissertations

Operation of Unmanned Aerial Vehicles (UAV) support many critical missions in the United State Air Force (USAF). Monitoring abnormal behavior is one of many responsibilities of the operator during a mission. Some behaviors are hard to be detect by an operator, especially when flying one or more autonomous vehicles; as such, detections require a high level of attention and focus to flight parameters. In this research, a monitoring system and its algorithm are designed and tested for a target fixed-wing UAV. The Autonomy Monitoring Service (AMS) compares the real vehicle or simulated Vehicle with a similar simulated vehicle using Software …


Sliver: Simulation-Based Logic Bomb Identification/Verification For Unmanned Aerial Vehicles, Jake M. Magness Mar 2020

Sliver: Simulation-Based Logic Bomb Identification/Verification For Unmanned Aerial Vehicles, Jake M. Magness

Theses and Dissertations

This research introduces SLIVer, a Simulation-based Logic Bomb Identification/Verification methodology, for finding logic bombs hidden within Unmanned Aerial Vehicle (UAV) autopilot code without having access to the device source code. Effectiveness is demonstrated by executing a series of test missions within a high-fidelity software-in-the-loop (SITL) simulator. In the event that a logic bomb is not detected, this methodology defines safe operating areas for UAVs to ensure to a high degree of confidence the UAV operates normally on the defined flight plan. SLIVer uses preplanned flight paths as the baseline input space, greatly reducing the input space that must be searched …


Development Of A Drone-Mounted Wireless Attack Platform, Nathan V. Barker Mar 2020

Development Of A Drone-Mounted Wireless Attack Platform, Nathan V. Barker

Theses and Dissertations

The commercial drone market has grown rapidly due to the increasing utility and capabilities of drones. This new found popularity has made it possible for inexpensive drones capable of impressive carry capacities and flight times to reach the consumer market. These new features also offer an invaluable resource to wireless hackers. Capitalizing on their mobility, a wireless hacker can equip a drone with hacking tools to surpass physical security (e.g. fences) with relative ease and reach wireless networks. This research seeks to experimentally evaluate the ability of a drone-mounted wireless attack platform equipped with a directional antenna to conduct wireless …


Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette Mar 2019

Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette

Theses and Dissertations

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers -- the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via …


Product Development Process For Small Unmanned Aerial Systems, Jonathan D. Poole Mar 2019

Product Development Process For Small Unmanned Aerial Systems, Jonathan D. Poole

Theses and Dissertations

The DoD has recognized the need for persistent Intelligence, Surveillance and Reconnaissance (ISR) over the last two decades. Recent developments with commercial drones have changed the market structure; there is now a thriving and extensive market base for drone based remote sensing. This research provides system engineering methods to support the DoD use of this burgeoning market to meet operational ISR needs. The three contributions of this research are: a process to support Small Unmanned Aerial Systems (SUAS) design, tools to support the design process, and tools to support risk assessment and reduction for both design and operations. The process …


First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman Jan 2019

First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman

Faculty Publications

Numerical lifting-line is a computationally efficient method for calculating aerodynamic forces and moments on aircraft. However, its potential has yet to be tapped for use in guidance, navigation, and control (GN&C). Linear covariance analysis is becoming a popular GN&C design tool and shows promise for pairing with numerical lifting-line. Pairing numerical lifting-line with linear covariance analysis allows for forward propagation of state uncertainty for real-time decision making. We demonstrate this for select state variables in a drone aerial recapture situation. Linear covariance analysis uses finite difference derivatives obtained from numerical lifting-line to calculate force and moment variances. These show agreement …


Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman Jan 2019

Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman

Faculty Publications

A key enabler of autonomous vehicles is the ability to plan the path of the vehicle to accomplish mission objectives. To be robust to realistic environments, path planners must account for uncertainty in the trajectory of the vehicle as well as uncertainty in the location of obstacles. The uncertainty in the trajectory of the vehicle is a difficult quantity to estimate, and is influenced by coupling between the vehicle dynamics, guidance, navigation, and control system as well as any disturbances acting on the vehicle. Monte Carlo analysis is the conventional approach to determine vehicle dispersion, while accounting for the coupled …


Range Information Characterization Of The Hokuyo Ust-20lx Lidar Sensor, Matthew A. Cooper, John F. Raquet, Rick Patton May 2018

Range Information Characterization Of The Hokuyo Ust-20lx Lidar Sensor, Matthew A. Cooper, John F. Raquet, Rick Patton

Faculty Publications

This paper presents a study on the data measurements that the Hokuyo UST-20LX Laser Rangefinder produces, which compiles into an overall characterization of the LiDAR sensor relative to indoor environments. The range measurements, beam divergence, angular resolution, error effect due to some common painted and wooden surfaces, and the error due to target surface orientation are analyzed. It was shown that using a statistical average of sensor measurements provides a more accurate range measurement. It was also shown that the major source of errors for the Hokuyo UST-20LX sensor was caused by something that will be referred to as “mixed …


Design And Test Of A Uav Swarm Architecture Over A Mesh Ad-Hoc Network, Timothy J. Allen Mar 2018

Design And Test Of A Uav Swarm Architecture Over A Mesh Ad-Hoc Network, Timothy J. Allen

Theses and Dissertations

The purpose of this research was to develop a testable swarm architecture such that the swarm of UAVs collaborate as a team rather than acting as several independent vehicles. Commercial-off-the-shelf (COTS) components were used as they were low-cost, readily available, and previously proven to work with at least two networked UAVs. Initial testing was performed via software-in-the-loop (SITL) demonstrating swarming of three simulated multirotor aircraft, then transitioned to real hardware. The architecture was then tested in an outdoor nylon netting enclosure. Command and control (C2) was provided by software implementing an enhanced version of Reynolds’ flocking rules via an onboard …


Stabilized Rpa Flight In Building Proximity Operations, Michael M. Kaniut Mar 2018

Stabilized Rpa Flight In Building Proximity Operations, Michael M. Kaniut

Theses and Dissertations

The thesis seeks a solution to the requirement for a highly reliable and capable Unmanned Air Vehicle (UAV) to support a wide array of missions and applications that require close proximity flight to structures. The scope of the project includes the drafting of a concept of operations (CONOPs) describing how the mission requirements might be met using the sensor, operators, and air vehicle described here in. The demonstration of the wall-following section of that CONOPs is performed by cart testing a custom algorithm and evaluating its ability to react to its environment. Finally, a flight test was performed to characterize …


Military Application Of Aerial Photogrammetry Mapping Assisted By Small Unmanned Air Vehicles, Kijun Lee Mar 2018

Military Application Of Aerial Photogrammetry Mapping Assisted By Small Unmanned Air Vehicles, Kijun Lee

Theses and Dissertations

This research investigated the practical military applications of the photogrammetric methods using remote sensing assisted by small unmanned aerial vehicles (SUAVs). The research explored the feasibility of UAV aerial mapping in terms of the specific military purposes, focusing on the geolocational and measurement accuracy of the digital models, and image processing time. The research method involved experimental flight tests using low-cost Commercial off-the-shelf (COTS) components, sensors and image processing tools to study key features of the method required in military like location accuracy, time estimation, and measurement capability. Based on the results of the data analysis, two military applications are …


A Hybrid Optimization Technique Applied To The Intermediate-Target Optimal Control Problem, Clay J. Humphreys, Richard G. Cobb, David R. Jacques, Jonah A. Reeger Aug 2016

A Hybrid Optimization Technique Applied To The Intermediate-Target Optimal Control Problem, Clay J. Humphreys, Richard G. Cobb, David R. Jacques, Jonah A. Reeger

Faculty Publications

The DoD has introduced the concept of Manned-Unmanned Teaming, a subset of which is the loyal wingman. Optimal control techniques have been proposed as a method for rapidly solving the intermediate-target (mid-point constraint) optimal control problem. Initial results using direct orthogonal collocation and a gradient-based method for solving the resulting nonlinear program reveals a tendency to converge to or to get `stuck’ in locally optimal solutions. The literature suggested a hybrid technique in which a particle swarm optimization is used to quickly find a neighborhood of a more globally minimal solution, at which point the algorithm switches to a gradient-based …


Global Hawk Systems Engineering Case Study, Air Force Center For Systems Engineering, Bill Kinzig Aug 2009

Global Hawk Systems Engineering Case Study, Air Force Center For Systems Engineering, Bill Kinzig

AFIT Documents

No abstract provided.