Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 2918

Full-Text Articles in Engineering

Ion Gnss Software-Defined Radio Metadata Standard, Sanjeev Gunawardena, Thomas Pany, James Curran Apr 2021

Ion Gnss Software-Defined Radio Metadata Standard, Sanjeev Gunawardena, Thomas Pany, James Curran

Faculty Publications

The past several years have seen a proliferation of software‐defined radio (SDR) data collection systems and processing platforms designed for or applicable to satellite navigation (satnav) applications. These systems necessarily produce datasets in a wide range of different formats. To correctly interpret this SDR data, essential information such as the packed sample format and sampling rate is needed. Communicating this metadata between creators and users has historically been an ad‐hoc, cumbersome, and error‐prone process. To address this issue, the satnav SDR community developed a metadata standard and normative software library to automate this process, thus simplifying the ...


Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv Apr 2021

Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv

Faculty Publications

We present twisted spatiotemporal optical vortex (STOV) beams, which are partially coherent light sources that possess a coherent optical vortex and a random twist coupling their space and time dimensions. These beams have controllable partial coherence and transverse orbital angular momentum (OAM), which distinguishes them from the more common spatial vortex and twisted beams (known to carry longitudinal OAM) in the literature and should ultimately make them useful in applications such as optical communications and optical tweezing. We present the mathematical analysis of twisted STOV beams, deriving the mutual coherence function and linear and angular momentum densities. We simulate the ...


Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson Apr 2021

Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson

Faculty Publications

Safety is a simple concept but an abstract task, specifically with aircraft. One critical safety system, the Traffic Collision Avoidance System II (TCAS), protects against mid-air collisions by predicting the course of other aircraft, determining the possibility of collision, and issuing a resolution advisory for avoidance. Previous research to identify vulnerabilities associated with TCAS’s communication processes discovered that a false injection attack presents the most comprehensive risk to veritable trust in TCAS, allowing for a mid-air collision. This research explores the viability of successfully executing a false injection attack against a target aircraft, triggering a resolution advisory. Monetary constraints ...


Weather-Related Construction Delays In A Changing Climate: A Systematic State-Of-The-Art Review, Steven J. Schuldt, Matthew R. Nicholson, Yaquarri A. Adams Ii, Justin D. Delorit Mar 2021

Weather-Related Construction Delays In A Changing Climate: A Systematic State-Of-The-Art Review, Steven J. Schuldt, Matthew R. Nicholson, Yaquarri A. Adams Ii, Justin D. Delorit

Faculty Publications

Adverse weather delays forty-five percent of construction projects worldwide, costing project owners and contractors billions of dollars in additional expenses and lost revenue each year. Additionally, changes in climate are expected to increase the frequency and intensity of weather conditions that cause these construction delays. Researchers have investigated the effect of weather on several aspects of construction. Still, no previous study comprehensively (1) identifies and quantifies the risks weather imposes on construction projects, (2) categorizes modeling and simulation approaches developed, and (3) summarizes mitigation strategies and adaptation techniques to provide best management practices for the construction industry. This paper accomplishes ...


Thermal Ignition Of A Combustible Over An Inclined Hot Plate, Salaika Parvin, Nepal Chandra Roy, Rama S. R. Gorla Mar 2021

Thermal Ignition Of A Combustible Over An Inclined Hot Plate, Salaika Parvin, Nepal Chandra Roy, Rama S. R. Gorla

Faculty Publications

In this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal ...


Optimal Defense Of High Value Airborne Assets, Isaac E. Weintraub Mar 2021

Optimal Defense Of High Value Airborne Assets, Isaac E. Weintraub

Theses and Dissertations

Optimal control theory and differential game theory is applied to the study of the defense of high value airborne assets, particularly in the case of a single threat such as an adversarial aircraft or missile. Rather than utilizing onboard defenses of the high value airborne asset, defense is proposed using a teamed unmanned combat air vehicle. The common scenario throughout this dissertation involves the defense of a high value airborne asset (evader) teamed with an unmanned combat vehicle (defender) against a single threat (pursuer). The unmanned combat air vehicle (defender), provides defense in one of two ways: kinetic or directed ...


Sparc: Statistical Performance Analysis With Relevance Conclusions, Justin C. Tullos, Scott R. Graham, Jeremy D. Jordan, Pranav R. Patel Feb 2021

Sparc: Statistical Performance Analysis With Relevance Conclusions, Justin C. Tullos, Scott R. Graham, Jeremy D. Jordan, Pranav R. Patel

Faculty Publications

The performance of one computer relative to another is traditionally characterized through benchmarking, a practice occasionally deficient in statistical rigor. The performance is often trivialized through simplified measures, such as the approach of central tendency, but doing so risks a loss of perspective of the variability and non-determinism of modern computer systems. Authentic performance evaluations are derived from statistical methods that accurately interpret and assess data. Methods that currently exist within performance comparison frameworks are limited in efficacy, statistical inference is either overtly simplified or altogether avoided. A prevalent criticism from computer performance literature suggests that the results from difference ...


On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh Jan 2021

On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh

Faculty Publications

Multimode optical switch is a key component of mode division multiplexing in modern high-speed optical signal processing. In this paper, we introduce for the first time a novel 2 × 2 multimode switch design and demonstrate in the proof-of-concept. The device composes of four Y-multijunctions and 2 × 2 multimode interference coupler using silicon-on-insulator material with four controllable phase shifters. The shifters operate using thermo-optic effects utilizing Ti heaters enabling simultaneous switching of the optical signal between the output ports on four quasi-transverse electric modes with the electric power consumption is in order of 22.5 mW and the switching time is ...


Impact Of Neutron Energy On Asteroid Deflection Performance, Lansing S. Horan Iv, Darren E. Holland, Megan Bruck Syal, James E. Bevins, Joseph W. Wasem Jan 2021

Impact Of Neutron Energy On Asteroid Deflection Performance, Lansing S. Horan Iv, Darren E. Holland, Megan Bruck Syal, James E. Bevins, Joseph W. Wasem

Faculty Publications

In the future, a hazardous asteroid will find itself on a collision course with Earth. For asteroids of moderate size or larger, a nuclear device is one of humanity's only technologies capable of mitigating this threat via deflection on a timescale of less than a decade. This work examined how the output neutron energy from a nuclear device standoff detonation affects the deflection of a notional asteroid that is 300 meters in diameter and composed of silicon dioxide at a bulk density of 1.855 g/cm3. 14.1 MeV and 1 MeV neutron energy sources were modeled ...


Resilience For Multi-Filter All-Source Navigation Framework With Integrity, Jonathon S. Gipson, Robert C. Leishman Jan 2021

Resilience For Multi-Filter All-Source Navigation Framework With Integrity, Jonathon S. Gipson, Robert C. Leishman

Faculty Publications

The Autonomous and Resilient Management of All-source Sensors (ARMAS) framework monitors residual-space test statistics across unique sensor-exclusion banks of filters, (known as subfilters) to provide a resilient, fault-resistant all-source navigation architecture with assurance. A critical assumption of this architecture, demonstrated in this paper, is fully overlapping state observability across all subfilters. All-source sensors, particularly those that only provide partial state information (altimeters, TDoA, AOB, etc.) do not intrinsically meet this requirement.
This paper presents a novel method to monitor real-time overlapping position state observability and introduces an "observability bank" within the ARMAS framework, known as Stable Observability Monitoring (SOM). SOM ...


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection ...


Analysis For Hybrid Rocket Fuel Regression Using Stereolithographic Geometry, Michael P. King Dec 2020

Analysis For Hybrid Rocket Fuel Regression Using Stereolithographic Geometry, Michael P. King

Theses and Dissertations

Hybrid Rocket Engines (HRE) have characteristically low fuel regression that limits their performance. Additive manufacturing and rapid prototyping can possibly solve some of the problems with Hybrid propulsion regression by creating geometry not possible with conventional manufacturing. This work is attempting to make geometric regression simulation of HRE easier by using STereoLithography (STL files) as the geometry. This analysis sets flow conditions, boundary conditions, propellant selection, and allows for fuel geometry to be altered to simulate geometry’s effects on regression rate and propellant performance. This model can be used for more advanced geometric analysis to improve and predict performance.


Sparse Bases And Bayesian Inference Of Electromagnetic Scattering, John Lee Dec 2020

Sparse Bases And Bayesian Inference Of Electromagnetic Scattering, John Lee

Theses and Dissertations

Many approaches in CEM rely on the decomposition of complex radiation and scattering behavior with a set of basis vectors. Accurate estimation of the quantities of interest can be synthesized through a weighted sum of these vectors. In addition to basis decompositions, sparse signal processing techniques developed in the CS community can be leveraged when only a small subset of the basis vectors are required to sufficiently represent the quantity of interest. We investigate several concepts in which novel bases are applied to common electromagnetic problems and leverage the sparsity property to improve performance and/or reduce computational burden. The ...


Continuous Integration/Continuous Delivery Pipeline For Air Force Distributed Common Ground System (Af Dcgs), Carolyn W. Fuller Dec 2020

Continuous Integration/Continuous Delivery Pipeline For Air Force Distributed Common Ground System (Af Dcgs), Carolyn W. Fuller

Theses and Dissertations

AF DCGS has a recognized need to improve speed of delivery for modification and sustainment of the weapon system. Given that the program office implemented a Continuous Integration/Continuous Delivery (CI/CD) process for the sole purpose of delivering capability to the field faster, there is a need to measure and report the pipeline throughput. This research conducts an independent evaluation of the newly implemented pipeline within AF DCGS’s existing integration and test laboratories. Actual project data from the agile development work environments is studied and hypothesis tests are conducted to substantiate that the CI/CD pipeline improved the ...


Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell Dec 2020

Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell

Theses and Dissertations

In the interest of improving the resilience of cyber-physical control systems to better operate in the presence of various cyber-attacks and/or faults, this dissertation presents a novel controller design based on deep-learning networks. This research lays out a controller design that does not rely on fault or cyber-attack detection. Being passive, the controller’s routine operating process is to take in data from the various components of the physical system, holistically assess the state of the physical system using deep-learning networks and decide the subsequent round of commands from the controller. This use of deep-learning methods in passive fault ...


Electromagnetic Interference Estimation Via Conditional Neural Processing, Edgar E. Gomez Dec 2020

Electromagnetic Interference Estimation Via Conditional Neural Processing, Edgar E. Gomez

Theses and Dissertations

The goal of this thesis is to determine the efficacy of employing Machine Learning (ML) to solve Joint Urgent Operational Need (JUON) CC-0575, which aims to develop a Common Operating Picture (COP) of the Global Positioning System (GPS) Electromagnetic Interference (EMI) environment. With the growing popularity of Artificial Neural Networks (ANNs), ML solutions are quickly gaining traction in businesses, academia and government. This in turn allows for problem solutions that were previously inconceivable using the classical programming paradigm. This thesis proposes a method to develop a COP of the battlefield via ANN ingestion of multiple-source signals and sensors. We conduct ...


The Effects Of Aircraft Use And Available Repar Spares On Aircraft Sortie Generaiton: A Long-Duration Logistical Wargaming Simulationtool, Nathaniel M. Choo Dec 2020

The Effects Of Aircraft Use And Available Repar Spares On Aircraft Sortie Generaiton: A Long-Duration Logistical Wargaming Simulationtool, Nathaniel M. Choo

Theses and Dissertations

A long-duration logistical wargame simulation tool that can provide quick insights into the daily aircraft availability and the daily number of missions accomplished for a variety of operational scenarios is developed. This simulation tool is designed to be a stepwise wargaming support tool for adjudication within long-duration logistical wargames and provides the user many capabilities including, but not limited to, the ability to have multiple bases and types of aircraft. Additionally, the user has the ability to control types of part failures, control parts availability, control maintenance capabilities, and control number of mission scheduled. Finally, the user can account for ...


Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer Dec 2020

Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer

Theses and Dissertations

Composite materials are strong, lightweight, and stiff making them desirable in aerospace applications. However, a practical issue arises with composites in that they behave unpredictably in bolted joints, where damage and cracks are often initiated. This research investigated a solution to correcting the problem with composite bolted joints. A novel hybrid composite material was developed, where thin stainless steel foils were placed between and in place of preimpregnated composite plies during the cure cycle to reinforce stress concentrations in bolted joints. This novel composite was compared to control samples experimentally in quasi-static monotonic loading in double shear configuration in 9-ply ...


Specifying Space Defense Operator Interfaces Through The Application Of Cognitive Systems Engineering And Prototyping, Justin E. Oryschak Nov 2020

Specifying Space Defense Operator Interfaces Through The Application Of Cognitive Systems Engineering And Prototyping, Justin E. Oryschak

Theses and Dissertations

The Department of Defense needs better tools to support its operators as they strive to defend its space assets. The growing sophistication of anti-satellite weapons increasingly challenges the nation’s orbital communications and surveillance infrastructure. Operators face difficulties gathering useful information and dealing with the complexity of potential enemy actions. This research applied cognitive systems engineering and ecological interface design (EID) methodologies to create a prototype space mission management tool that enhances operator situation awareness and decision-making ability. Applied cognitive task analysis interviews were used to document space operator decision-making in their domain. Model-based systems engineering was applied to integrate ...


United States Department Of Defense (Dod) Real Property Repair, Alterations, Maintenance, And Construction Project Contract Data: 2009–2020, Tyler Stout, Adam Teston, Brent T. Langhals, Justin D. Delorit, Carlton Hendrix, Steven J. Schuldt Oct 2020

United States Department Of Defense (Dod) Real Property Repair, Alterations, Maintenance, And Construction Project Contract Data: 2009–2020, Tyler Stout, Adam Teston, Brent T. Langhals, Justin D. Delorit, Carlton Hendrix, Steven J. Schuldt

Faculty Publications

Nearly one-half of all construction projects exceed planned costs and schedule, globally [1]. Owners and construction managers can analyze historical project performance data to inform cost and schedule overrun risk-reduction strategies. Though, the majority of open-source project datasets are limited by the number of projects, data dimensionality, and location. A significant global customer of the construction industry, the Department of Defense (DoD) maintains a vast database of historical project data that can be used to determine the sources and magnitude of construction schedule and cost overruns for many continental and international locations. The selection of data provided by the authors ...


End-To-End Direct Digital Synthesis Simulation And Mathematical Model To Minimize Quantization Effects Of Digital Signal Generation, Pranav R. Patel, Richard K. Martin Oct 2020

End-To-End Direct Digital Synthesis Simulation And Mathematical Model To Minimize Quantization Effects Of Digital Signal Generation, Pranav R. Patel, Richard K. Martin

Faculty Publications

Direct digital synthesis (DDS) architectures are becoming more prevalent as modern digital-to-analog converter (DAC) and programmable logic devices evolve to support higher bandwidths. The DDS architecture provides the benefit of digital control but at a cost of generating spurious content in the spectrum. The generated spurious content may cause intermodulation distortion preventing proper demodulation of the received signal. The distortion may also interfere with the neighboring frequency bands. This article presents the various DDS architectures and explores the DDS architecture which provides the most digital reconfigurability with the lowest spurious content. End-to-end analytical equations, numerical and mathematical models are developed ...


Multimodal Representation Learning And Set Attention For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing, Kevin C. Gross, Brett J. Borghetti, Christine M. Schubert Kabban, Jacob Martin, Joseph Meola Oct 2020

Multimodal Representation Learning And Set Attention For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing, Kevin C. Gross, Brett J. Borghetti, Christine M. Schubert Kabban, Jacob Martin, Joseph Meola

Faculty Publications

A multimodal generative modeling approach combined with permutation-invariant set attention is investigated in this paper to support long-wave infrared (LWIR) in-scene atmospheric compensation. The generative model can produce realistic atmospheric state vectors (T;H2O;O3) and their corresponding transmittance, upwelling radiance, and downwelling radiance (TUD) vectors by sampling a low-dimensional space. Variational loss, LWIR radiative transfer loss and atmospheric state loss constrain the low-dimensional space, resulting in lower reconstruction error compared to standard mean-squared error approaches. A permutation-invariant network predicts the generative model low-dimensional components from in-scene data, allowing for simultaneous estimates of the atmospheric state and TUD vector. Forward ...


Nonlinear Optical Measurements Of Cdsip2 At Near And Mid-Infrared Wavelengths, Manuel R. Ferdinandus, Jamie J. Gengler, Kent L. Averett, Kevin T. Zawilski, Peter G. Schunemann, Carl M. Liebig Sep 2020

Nonlinear Optical Measurements Of Cdsip2 At Near And Mid-Infrared Wavelengths, Manuel R. Ferdinandus, Jamie J. Gengler, Kent L. Averett, Kevin T. Zawilski, Peter G. Schunemann, Carl M. Liebig

Faculty Publications

We measure the birefringence of the nonlinear optical (NLO) properties of cadmium silicon phosphide via the Z-scan technique at near and mid-infrared wavelengths. We discuss the implications of the NLO properties on optical parametric amplifier performance. We find that the nonlinear absorption does reduce the conversion efficiency, while the nonlinear refraction has a negligible effect.


Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit Sep 2020

Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit

Faculty Publications

The United States Air Force has implemented a dispersed air base strategy to enhance mission effectiveness for near-peer conflicts. Asset dispersal places many smaller bases across a wide geographic area, which increases resupply requirements and logistical complexity. Hybrid energy systems reduce resupply requirements through sustainable, off-grid energy production. This paper presents a novel hybrid energy renewable delivery system (HERDS) model capable of (1) selecting the optimal hybrid energy system design that meets demand at the lowest net present cost and (2) optimizing the delivery of the selected system using existing Air Force cargo aircraft. The novelty of the model’s ...


Direct Digital Synthesis: A Flexible Architecture For Advanced Signals Research For Future Satellite Navigation Payloads, Pranav Patel Sep 2020

Direct Digital Synthesis: A Flexible Architecture For Advanced Signals Research For Future Satellite Navigation Payloads, Pranav Patel

Theses and Dissertations

In legacy Global Positioning System (GPS) Satellite Navigation (SatNav) payloads, the architecture does not provide the flexibility to adapt to changing circumstances and environments. GPS SatNav payloads have largely remained unchanged since the system became fully operational in April 1995. Since then, the use of GPS has become ubiquitous in our day-to-day lives. GPS availability is now a basic assumption for distributed infrastructure; it has become inextricably tied to our national power grids, cellular networks, and global financial systems. Emerging advancements of easy to use radio technologies, such as software-defined radios (SDRs), have greatly lowered the difficulty of discovery and ...


Chronos Spacecraft With Chiron Probe: Exploration Of The Hydrosphere, Principle Satellites, Atmosphere, And Rings Of Uranus, Payton E. Pearson Sep 2020

Chronos Spacecraft With Chiron Probe: Exploration Of The Hydrosphere, Principle Satellites, Atmosphere, And Rings Of Uranus, Payton E. Pearson

Theses and Dissertations

A design reference mission using more modern technological innovations has been developed for exploration of the outer reaches of our Solar System, specifically Uranus and its system of satellites. This mission will utilize theoretical technologies mostly without regard to their current technological readiness level (TRL), though most systems have a TRL of at least 5. The primary innovations explored in this thesis are the new launch systems that provide far greater payload capacity potentially sent to anywhere in the Solar System, new Stirling-engine radioisotope thermoelectric generators (SRTGs), vastly improved data storage technologies, optimized satellite antenna relay of data using much ...


Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung Sep 2020

Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung

Theses and Dissertations

This dissertation focuses on improving the ability to detect dim stellar objects that are in close proximity to a bright one, through statistical image processing using short exposure images. The goal is to improve the space domain awareness capabilities with the existing infrastructure. Two new algorithms are developed. The first one is through the Neighborhood System Blind Deconvolution where the data functions are separated into the bright object, the neighborhood system, and the background functions. The second one is through the Dimension Reduction Blind Deconvolution, where the object function is represented by the product of two matrices. Both are designed ...


Aligning Performance Management Systems For Lasting Outcomes In Humanitarian Operations, Kalyn M. Howard Sep 2020

Aligning Performance Management Systems For Lasting Outcomes In Humanitarian Operations, Kalyn M. Howard

Theses and Dissertations

Logistics is dynamic, expansive, and critical to organizational success. While it is generally believed that effective logistics management is associated with positive performance outcomes, the links between organizational practice and performance are understudied. This dissertation leverages resource-based theory and organizational learning theory to examine organizational practice and performance in non-traditional logistics settings, with particular focus on military organizations and humanitarian operational settings. First, a meta-analytical study establishes generalizable associations between various operations management practices and performance outcomes. Then, this is applied to dynamic humanitarian logistics settings, exploring how practitioners perceive practice and performance, and how this is reported and documented ...


Joint 1d And 2d Neural Networks For Automatic Modulation Recognition, Luis M. Rosario Morel Sep 2020

Joint 1d And 2d Neural Networks For Automatic Modulation Recognition, Luis M. Rosario Morel

Theses and Dissertations

The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O'Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of ...


Investigation Of An Avionics Part Deficiencies In Royal Saudi Air Force Fleets, Nasser S. Alanazi Sep 2020

Investigation Of An Avionics Part Deficiencies In Royal Saudi Air Force Fleets, Nasser S. Alanazi

Theses and Dissertations

The Royal Saudi Air Force (RSAF) is experiencing a shortage in certain avionics parts due to a lack of reliability. This issue is causing a supply chain disturbance in the F1-15 fleet and the Hawk fleet. One of the factors behind this problem is the environmental effects in Saudi Arabia .The study will investigate and analyze the methods for the Improvement Cycle Processes and the Quality Management within the RSAF repair cycle. Finding show that, the discrepancies are rising during summer and fall time due to the environment change, Other finding were addressed in the study.