Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Toward Non-Corrosion And Highly Sustainable Structural Members By Using Ultra-High-Performance Materials For Transportation Infrastructure, Shih-Ho Chao, Ashish Karmacharya Sep 2019

Toward Non-Corrosion And Highly Sustainable Structural Members By Using Ultra-High-Performance Materials For Transportation Infrastructure, Shih-Ho Chao, Ashish Karmacharya

Publications

This research focused on investigating a highly sustainable and efficient reinforced concrete structural member for future infrastructure by utilizing emerging high-performance materials. These materials include ultra-high-performance fiber-reinforced concrete (UHP-FRC) and corrosion-resistant high-strength fiber-reinforced polymer (FRP) bars. Four reduced scale UHP-FRC specimens were tested under large displacement reversals to prove the proposed new ductile-concrete strong-reinforcement (DCSR) design concept by fully utilizing these ultra-high-performance materials. Micro steel fibers were incorporated into three specimens and ultra-high molecular weight polyethylene fibers were blended into the fourth specimen. One specimen with ASTM A1035 MMFX high-strength steel rebars, one with high-strength glass fiber reinforced polymer (GFRP) …


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the …