Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang Jan 2023

Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang

Electrical and Computer Engineering Faculty Research & Creative Works

This Article Presents a New Optimization Method for Complex Power Distribution Networks (PDNs) with Irregular Shapes and Multilayer Structures using Deep Reinforcement Learning (DRL), Which Has Not Been Considered Before. a Fast Boundary Integration Method is Applied to Compute the Impedance Matrix of a PDN Structure. Subsequently, a New DRL Algorithm based on Proximal Policy Optimization (PPO) is Proposed to Optimize the Decoupling Capacitor (Decap) Placement by Minimizing the Number of Decaps While Satisfying the Desired Target Impedance. in the Proposed Approach, the PDN Structure Information is Encoded into Matrices and Serves as the Input of the DRL Algorithm, Which …


An Intelligent Distributed Ledger Construction Algorithm For Iot, Charles Rawlins, Jagannathan Sarangapani Jan 2022

An Intelligent Distributed Ledger Construction Algorithm For Iot, Charles Rawlins, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Blockchain is the next generation of secure data management that creates near-immutable decentralized storage. Secure cryptography created a niche for blockchain to provide alternatives to well-known security compromises. However, design bottlenecks with traditional blockchain data structures scale poorly with increased network usage and are extremely computation-intensive. This made the technology difficult to combine with limited devices, like those in Internet of Things networks. In protocols like IOTA, replacement of blockchain's linked-list queue processing with a lightweight dynamic ledger showed remarkable throughput performance increase. However, current stochastic algorithms for ledger construction suffer distinct trade-offs between efficiency and security. This work proposed …


Physical-Based Training Data Collection Approach For Data-Driven Lithium-Ion Battery State-Of-Charge Prediction, Jie Li, Will Ziehm, Jonathan W. Kimball, Robert Landers, Jonghyun Park Sep 2021

Physical-Based Training Data Collection Approach For Data-Driven Lithium-Ion Battery State-Of-Charge Prediction, Jie Li, Will Ziehm, Jonathan W. Kimball, Robert Landers, Jonghyun Park

Electrical and Computer Engineering Faculty Research & Creative Works

Data-Driven approaches for State of Charge (SOC) prediction have been developed considerably in recent years. However, determining the appropriate training dataset is still a challenge for model development and validation due to the considerably varieties of lithium-ion batteries in terms of material, types of battery cells, and operation conditions. This work focuses on optimization of the training data set by using simple measurable data sets, which is important for the accuracy of predictions, reduction of training time, and application to online estimation. It is found that a randomly generated data set can be effectively used for the training data set, …


Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang Mar 2021

Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Mild traumatic brain injury (mTBI) strongly associates with chronic neurodegenerative impairments such as post-traumatic stress disorder (PTSD) and mild cognitive impairment. Early detection of concussive events would significantly enhance the understanding of head injuries and provide better guidance for urgent diagnoses and the best clinical practices for achieving full recovery. New method: A smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real-time sensing of blunt-force impact events to helmets. The transient signals provide both magnitude and directional information about the impact event, and the data can be used for training machine learning (ML) …


Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen Aug 2020

Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Patient distances can be calculated based on signs and symptoms derived from an ontological hierarchy. There is controversy as to whether patient distance metrics that consider the semantic similarity between concepts can outperform standard patient distance metrics that are agnostic to concept similarity. The choice of distance metric can dominate the performance of classification or clustering algorithms. Our objective was to determine if semantically augmented distance metrics would outperform standard metrics on machine learning tasks.

Methods: We converted the neurological findings from 382 published neurology cases into sets of concepts with corresponding machine-readable codes. We calculated patient distances by …


Machine Learning Based Computational Electromagnetic Analysis For Electromagnetic Compatibility, L. (Lijun) J. Jiang, H. M. Yao, H. H. Zhang, Y. W. Qin Oct 2018

Machine Learning Based Computational Electromagnetic Analysis For Electromagnetic Compatibility, L. (Lijun) J. Jiang, H. M. Yao, H. H. Zhang, Y. W. Qin

Electrical and Computer Engineering Faculty Research & Creative Works

While machine learning is becoming a demanding request in every corner of modern technology development, we are trying to see if we could make computational electromagnetic algorithms compatible to machine learning methods. In this paper, we introduce two efforts in line with this direction: solving method of moments (MoM) can be seen as a training training process. Consequently, the artificial neural network (ANN) could be used to solve MoM naturally through training. Amazon Web Service (AWS) can be used as the computations platform to utilize the existing hardware and software resources for machine learning. Another effort regarding to the nonlinear …


Machine Learning Based Neural Network Solving Methods For The Fdtd Method, He Ming Yao, Li (Lijun) Jun Jiang Jan 2018

Machine Learning Based Neural Network Solving Methods For The Fdtd Method, He Ming Yao, Li (Lijun) Jun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, two novel computational processes are proposed to solve Finite-Difference Time-Domain (FDTD) based on machine learning deep neural networks. The field and boundary conditions are employed to establish recurrent neural network FDTD (RNN-FDTD) model and convolution neural network FDTD (CNN-FDTD) model respectively. Numerical examples from scalar wave equations are provided to benchmark the performance of the proposed methods. The results demonstrate that the newly proposed methods could solve FDTD steps with satisfactory accuracy. According to our knowledge, these are unreported new approaches for machine learning based FDTD solving methods.


Machine Learning Based Method Of Moments (Ml-Mom), He Ming Yao, Li (Lijun) Jun Jiang, Yu Wei Qin Oct 2017

Machine Learning Based Method Of Moments (Ml-Mom), He Ming Yao, Li (Lijun) Jun Jiang, Yu Wei Qin

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a novel method by rethinking the method of moments (MoM) solving process into a machine learning training process. Based on the artificial neural network (ANN), the conventional MoM matrix is treated as the training data set, based on which machine learning training process becomes conventional linear algebra MoM solving process. The trained result is the solution of MoM. The multiple linear regression (MLR) is utilized to train the model. Amazon Web Service (AWS) is used as the computations platform to utilize the existing hardware and software resources for machine learning. To verify the feasibility of the proposed …


Machine Learning Based Mom (Ml-Mom) For Parasitic Capacitance Extractions, He Ming Yao, Yu Wei Qin, Li (Lijun) Jun Jiang Apr 2017

Machine Learning Based Mom (Ml-Mom) For Parasitic Capacitance Extractions, He Ming Yao, Yu Wei Qin, Li (Lijun) Jun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

This paper is a rethinking of the conventional method of moments (MoM) using the modern machine learning (ML) technology. By repositioning the MoM matrix and unknowns in an artificial neural network (ANN), the conventional linear algebra MoM solving is changed into a machine learning training process. The trained result is the solution. As an application, the parasitic capacitance extraction broadly needed by VLSI modeling is solved through the proposed new machine learning based method of moments (ML-MoM). The multiple linear regression (MLR) is employed to train the model. The computations are done on Amazon Web Service (AWS). Benchmarks demonstrated the …