Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Machine Learning

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 110

Full-Text Articles in Engineering

Simulating And Training Autonomous Rover Navigation In Unity Engine Using Local Sensor Data, Christopher Pace May 2024

Simulating And Training Autonomous Rover Navigation In Unity Engine Using Local Sensor Data, Christopher Pace

Senior Honors Theses

Autonomous navigation is essential to remotely operating mobile vehicles on Mars, as communication takes up to 20 minutes to travel between the Earth and Mars. Several autonomous navigation methods have been implemented in Mars rovers and other mobile robots, such as odometry or simultaneous localization and mapping (SLAM) until the past few years when deep reinforcement learning (DRL) emerged as a viable alternative. In this thesis, a simulation model for end-to-end DRL Mars rover autonomous navigation training was created using Unity Engine, using local inputs such as GNSS, LiDAR, and gyro. This model was then trained in navigation in a …


Machine Learning Prediction Of Hea Properties, Nicholas J. Beaver, Nathaniel Melisso, Travis Murphy Oct 2023

Machine Learning Prediction Of Hea Properties, Nicholas J. Beaver, Nathaniel Melisso, Travis Murphy

College of Engineering Summer Undergraduate Research Program

High-entropy alloys (HEA) are a very new development in the field of metallurgical materials. They are made up of multiple principle atoms unlike traditional alloys, which contributes to their high configurational entropy. The microstructure and properties of HEAs are are not well predicted with the models developed for more common engineering alloys, and there is not enough data available on HEAs to fully represent the complex behavior of these alloys. To that end, we explore how the use of machine learning models can be used to model the complex, high dimensional behavior in the HEA composition space. Based on our …


Predicting Dynamic Fragmentation Characteristics From High-Impact Energy Events Utilizing Terrestrial Static Arena Test Data And Machine Learning, Katharine Larsen, Riccardo Bevilacqua, Omkar S. Mulekar, Elisabetta L. Jerome, Thomas J. Hatch-Aguilar Aug 2023

Predicting Dynamic Fragmentation Characteristics From High-Impact Energy Events Utilizing Terrestrial Static Arena Test Data And Machine Learning, Katharine Larsen, Riccardo Bevilacqua, Omkar S. Mulekar, Elisabetta L. Jerome, Thomas J. Hatch-Aguilar

Student Works

To continue space operations with the increasing space debris, accurate characterization of fragment fly-out properties from hypervelocity impacts is essential. However, with limited realistic experimentation and the need for data, available static arena test data, collected utilizing a novel stereoscopic imaging technique, is the primary dataset for this paper. This research leverages machine learning methodologies to predict fragmentation characteristics using combined data from this imaging technique and simulations, produced considering dynamic impact conditions. Gaussian mixture models (GMMs), fit via expectation maximization (EM), are used to model fragment track intersections on a defined surface of intersection. After modeling the fragment distributions, …


Generalization Through Diversity: Improving Unsupervised Environment Design, Wenjun Li, Pradeep Varakantham, Dexun Li Aug 2023

Generalization Through Diversity: Improving Unsupervised Environment Design, Wenjun Li, Pradeep Varakantham, Dexun Li

Research Collection School Of Computing and Information Systems

Agent decision making using Reinforcement Learning (RL) heavily relies on either a model or simulator of the environment (e.g., moving in an 8x8 maze with three rooms, playing Chess on an 8x8 board). Due to this dependence, small changes in the environment (e.g., positions of obstacles in the maze, size of the board) can severely affect the effectiveness of the policy learned by the agent. To that end, existing work has proposed training RL agents on an adaptive curriculum of environments (generated automatically) to improve performance on out-of-distribution (OOD) test scenarios. Specifically, existing research has employed the potential for the …


Predicting Corrosion Damage In The Human Body Using Artificial Intelligence: In Vitro Progress And Future Applications Applications, Michael A. Kurtz, Ruoyu Yang, Mohan S. R. Elapolu, Audrey C. Wessinger, William Nelson, Kazzandra Alaniz, Rahul Rai, Jeremy L. Gilbert Jul 2023

Predicting Corrosion Damage In The Human Body Using Artificial Intelligence: In Vitro Progress And Future Applications Applications, Michael A. Kurtz, Ruoyu Yang, Mohan S. R. Elapolu, Audrey C. Wessinger, William Nelson, Kazzandra Alaniz, Rahul Rai, Jeremy L. Gilbert

Publications

Artificial intelligence (AI) is used in the clinic to improve patient care. While the successes illustrate the impact AI can have, few studies have led to improved clinical outcomes. A gap in translational studies, beginning at the basic science level, exists. In this review, we focus on how AI models implemented in non-orthopedic fields of corrosion science may apply to the study of orthopedic alloys. We first define and introduce fundamental AI concepts and models, as well as physiologically relevant corrosion damage modes. We then systematically review the corrosion/AI literature. Finally, we identify several AI models that may be Preprint …


Asset Cueing Nuclear Radiation Anomaly Detection Using An Embedded Neural Network Resource, April Inamura Jul 2023

Asset Cueing Nuclear Radiation Anomaly Detection Using An Embedded Neural Network Resource, April Inamura

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Nuclear radiation detection is inherently a challenging task, coupled with a high background variation or increase in anomalies, the accuracy for detection can plummet. A key factor in the success of nuclear detection hinges on the sensor’s ability to generalize its model and directly leads to the model’s robustness. The goal of this project is to develop algorithms suitable for use on the University of Nebraska-Lincoln’s Pingora chip, a low-power, system-on-chip device with an active neural processing unit (NPU) made for nuclear radiation detection. The thesis aims to improve Pingora’s overall generalization ability in nuclear radiation source detection. A multiphase …


Probabilistic Machine Learning For Battery State Of Health Prognostics, Charli Zaretsky May 2023

Probabilistic Machine Learning For Battery State Of Health Prognostics, Charli Zaretsky

Honors Scholar Theses

The ability to understand and predict the state of health (SOH) of lithium-ion batteries is an integral component of their widespread commercial use. There are various methods through which SOH can be analyzed and predicted, and this paper discusses these different methods, and the strengths and weaknesses of each. This paper also details an analysis of lithium-ion battery SOH through two data-driven machine learning methods: XGBoost and Gaussian process regression. A comparison is made between each method’s accuracy in predicting next-cycle discharge capacity using electrochemical impedance spectroscopy (EIS) readings and battery charge and discharge rates, from a dataset given in …


Estimating Crop Stomatal Conductance Through High-Throughput Plant Phenotyping, Junxiao Zhang Apr 2023

Estimating Crop Stomatal Conductance Through High-Throughput Plant Phenotyping, Junxiao Zhang

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

During photosynthesis and transpiration, crops exchange carbon dioxide and water with the atmosphere through stomata. When a crop experiences water stress, stomata are closed to reducing water loss. However, the closing of stomata also negatively affects the photosynthetic efficiency of the crop and leads to lower yields. Stomatal conductance (gs) quantifies the degree of stomatal opening and closing by using the rate of gas exchange between the crop and the atmosphere, which helps to understand the water status of the crop for better irrigation management. Unfortunately, gs measurement typically requires contact measuring instruments and manual collection in the field, which …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Evaluation Of Liquid Loading In Gas Wells Using Machine Learning, Abderraouf Chemmakh, Olusegun Stanley Tomomewo, Kegang Ling, Ahmed Shammari Feb 2023

Evaluation Of Liquid Loading In Gas Wells Using Machine Learning, Abderraouf Chemmakh, Olusegun Stanley Tomomewo, Kegang Ling, Ahmed Shammari

Petroleum Engineering Student Publications

The inevitable result that gas wells witness during their life production is the liquid loading problem. The liquids that come with gas block the production tubing if the gas velocity supplied by the reservoir pressure is not enough to carry them to surface. Researchers used different theories to solve the problem naming, droplet fallback theory, liquid film reversal theory, characteristic velocity, transient simulations, and others. While there is no definitive answer on what theory is the most valid or the one that performs the best in all cases. This paper comes to involve a different approach, a combination between physics-based …


Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


A Framework For Teaching Machine Learning For Engineers, Lauren Singelmann, Jacob Covarrubias Jan 2023

A Framework For Teaching Machine Learning For Engineers, Lauren Singelmann, Jacob Covarrubias

Practice Papers

As machine learning and artificial intelligence become increasingly prevalent in our day-to-day lives, there becomes an even greater need for literacy in machine learning for those outside of the computer science domain. This work proposes a conceptual framework for teaching machine learning to engineering students with the goal of developing the knowledge and skills needed to apply machine learning techniques to engineering problems.

Many machine learning courses in computer science, math, and statistics focus on the theoretical basis of machine learning algorithms and assessment. This framework takes a fundamentally different approach by creating a course structure for machine learning practitioners …


Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang Jan 2023

Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang

Electrical and Computer Engineering Faculty Research & Creative Works

This Article Presents a New Optimization Method for Complex Power Distribution Networks (PDNs) with Irregular Shapes and Multilayer Structures using Deep Reinforcement Learning (DRL), Which Has Not Been Considered Before. a Fast Boundary Integration Method is Applied to Compute the Impedance Matrix of a PDN Structure. Subsequently, a New DRL Algorithm based on Proximal Policy Optimization (PPO) is Proposed to Optimize the Decoupling Capacitor (Decap) Placement by Minimizing the Number of Decaps While Satisfying the Desired Target Impedance. in the Proposed Approach, the PDN Structure Information is Encoded into Matrices and Serves as the Input of the DRL Algorithm, Which …


Quantum Classifiers For Video Quality Delivery, Tautvydas Lisas, Ruairí De Fréin Jan 2023

Quantum Classifiers For Video Quality Delivery, Tautvydas Lisas, Ruairí De Fréin

Conference papers

Classical classifiers such as the Support Vector Classifier (SVC) struggle to accurately classify video Quality of Delivery (QoD) time-series due to the challenge in constructing suitable decision boundaries using small amounts of training data. We develop a technique that takes advantage of a quantum-classical hybrid infrastructure called Quantum-Enhanced Codecs (QEC). We evaluate a (1) purely classical, (2) hybrid kernel, and (3) purely quantum classifier for video QoD congestion classification, where congestion is either low, medium or high, using QoD measurements from a real networking test-bed. Findings show that the SVC performs the classification task 4% better in the low congestion …


Toward Inclusive Online Environments: Counterfactual-Inspired Xai For Detecting And Interpreting Hateful And Offensive Tweets, Muhammad Deedahwar Mazhar Qureshi, Muhammad Atif Qureshi, Wael Rashwan Jan 2023

Toward Inclusive Online Environments: Counterfactual-Inspired Xai For Detecting And Interpreting Hateful And Offensive Tweets, Muhammad Deedahwar Mazhar Qureshi, Muhammad Atif Qureshi, Wael Rashwan

Articles

The prevalence of hate speech and offensive language on social media platforms such as Twitter has significant consequences, ranging from psychological harm to the polarization of societies. Consequently, social media companies have implemented content moderation measures to curb harmful or discriminatory language. However, a lack of consistency and transparency hinders their ability to achieve desired outcomes. This article evaluates various ML models, including an ensemble, Explainable Boosting Machine (EBM), and Linear Support Vector Classifier (SVC), on a public dataset of 24,792 tweets by T. Davidson, categorizing tweets into three classes: hate, offensive, and neither. The top-performing model achieves a weighted …


Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick Jan 2023

Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick

Systems Science Faculty Publications and Presentations

This research applies machine learning methods to build predictive models of Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western Energy Imbalance Market. Several methods are used in this research, including Reconstructability Analysis, developed in the systems community, and more well-known methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. The aims of the research are to identify predictive variables and obtain a new stand-alone model that improves prediction accuracy and reduces the INC (ability to increase generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements for Western Energy Imbalance Market participants. This …


Analyzing Ground Motion Records With Cvi Fuzzy Art, Dustin Tanksley, Xinzhe Yuan, Genda Chen, Donald C. Wunsch Jan 2023

Analyzing Ground Motion Records With Cvi Fuzzy Art, Dustin Tanksley, Xinzhe Yuan, Genda Chen, Donald C. Wunsch

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This paper explores using Cluster Validity Indices Fuzzy Adaptative Resonance Theory (CVI Fuzzy ART) to cluster ground motion records (GMRs). Clustering the features extracted from a supervised network trained for predicting the structure damage results in less overfitting from the trained network. Using Cluster Validity Indices (CVIs) to evaluate the clustering gives feedback to how well the data is being classified, allowing further separation of the data. By using CVI Fuzzy ART in combination with features extracted from a trained Convolutional Neural Network (CNN), we were able to form additional clusters in the data. Within the primary clusters, accuracy was …


A Comparison Of Feature Selection Methodologies And Learning Algorithms In The Development Of A Dna Methylation-Based Telomere Length Estimator, Trevor Doherty, Emma Dempster, Eilis Hannon, Jonathan Mill, Richie Poulton, David Corcoran, Karen Sugden, Ben Williams, Avshalom Caspi, Terrie E. Moffitt, Sarah Jane Delany, Therese Murphy Dr Jan 2023

A Comparison Of Feature Selection Methodologies And Learning Algorithms In The Development Of A Dna Methylation-Based Telomere Length Estimator, Trevor Doherty, Emma Dempster, Eilis Hannon, Jonathan Mill, Richie Poulton, David Corcoran, Karen Sugden, Ben Williams, Avshalom Caspi, Terrie E. Moffitt, Sarah Jane Delany, Therese Murphy Dr

Articles

The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine–guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based …


Learnfca: A Fuzzy Fca And Probability Based Approach For Learning And Classification, Suraj Ketan Samal Dec 2022

Learnfca: A Fuzzy Fca And Probability Based Approach For Learning And Classification, Suraj Ketan Samal

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering.

This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide …


Prediction Of Meltpool Depth In Laser Powder Bed Fusion Using In-Process Sensor Data, Part-Level Thermal Simulations, And Machine Learning, Grant King Dec 2022

Prediction Of Meltpool Depth In Laser Powder Bed Fusion Using In-Process Sensor Data, Part-Level Thermal Simulations, And Machine Learning, Grant King

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The goal of this thesis is the prevention of flaw formation in laser powder bed fusion additive manufacturing process. As a step towards this goal, the objective of this work is to predict meltpool depth as a function of in-process sensor data, part-level thermal simulations, and machine learning. As motivated in NASA's Marshall Space Flight Center specification 3716, prediction of meltpool depth is important because: (1) it can serve as a surrogate to estimate process status without the need for expensive post-process characterization, and (2) the meltpool depth provides an avenue for rapid qualification of microstructure evolution. To achieve the …


Artificial Intelligence And Applications, Sanjay Singh Dr. Nov 2022

Artificial Intelligence And Applications, Sanjay Singh Dr.

Technical Collection

I work in the broad areas of computational intelligence, artificial intelligence, neural networks, machine learning, deep learning, game theory, mathematical logic, and natural language processing. I am also actively working in the area of algorithmic fairness and explainable AI (XAI). Currently, we are developing neuro-symbolic logic learning systems for common sense reasoning, which aims to augment the existing conventional artificial intelligence, which is logically based. The neuro-symbolic logic-based systems will provide more accurate results than their GOAI (Good Old Artificial Intelligence) version. We are also working on the area of abstractive summarization methods. We intend to develop an efficient abstractive …


Machine Learning In Aerodynamic Shape Optimization, Jichao Li, Xiaosong Du, Joaquim R.R.A. Martins Oct 2022

Machine Learning In Aerodynamic Shape Optimization, Jichao Li, Xiaosong Du, Joaquim R.R.A. Martins

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, …


Development Of A Machine Learning-Based Model To Determine The Optimum And Safe Restriping Timing Of Thermoplastic Pavement Markings In Hot And Humid Climates, Momen R. Mousa, Marwa Hassan Aug 2022

Development Of A Machine Learning-Based Model To Determine The Optimum And Safe Restriping Timing Of Thermoplastic Pavement Markings In Hot And Humid Climates, Momen R. Mousa, Marwa Hassan

Publications

Due to limited budget, most transportation agencies restripe their thermoplastic pavement markings based on a fixed schedule or based on visual inspection instead of monitoring the retroreflectivity and restriping when the retroreflectivity drops below a pre-determined threshold. These strategies are questionable in terms of efficiency and economy. Therefore, previous studies proposed degradation models to predict the retroreflectivity of thermoplastic markings based on key variables. Yet, most of these studies reported low R2 (as low as 0.1), which placed little confidence in these models. Therefore, the objective of this study was to evaluate and predict the field performance of thermoplastics …


Load-Adjusted Prediction For Proactive Resource Management And Video Server Demand Profiling, Obinna Izima, Ruairí De Fréin Jul 2022

Load-Adjusted Prediction For Proactive Resource Management And Video Server Demand Profiling, Obinna Izima, Ruairí De Fréin

Articles

To lower costs associated with providing cloud resources, a network manager would like to estimate how busy the servers will be in the near future. This is a necessary input in deciding whether to scale up or down computing requirements. We formulate the problem of estimating cloud computational requirements as an integrated framework comprising of a learning and an action stage. In the learning stage, we use Machine Learning (ML) models to predict the video Quality of Delivery (QoD) metric for cloud-hosted servers and use the knowledge gained from the process to make resource management decisions during the action stage. …


Experimenting An Edge-Cloud Computing Model On The Gpulab Fed4fire Testbed, Vikas Tomer, Sachin Sharma Jul 2022

Experimenting An Edge-Cloud Computing Model On The Gpulab Fed4fire Testbed, Vikas Tomer, Sachin Sharma

Conference papers

There are various open testbeds available for testing algorithms and prototypes, including the Fed4Fire testbeds. This demo paper illustrates how the GPULAB Fed4Fire testbed can be used to test an edge-cloud model that employs an ensemble machine learning algorithm for detecting attacks on the Internet of Things (IoT). We compare experimentation times and other performance metrics of our model based on different characteristics of the testbed, such as GPU model, CPU speed, and memory. Our goal is to demonstrate how an edge-computing model can be run on the GPULab testbed. Results indicate that this use case can be deployed seamlessly …


Seabem: An Artificial Intelligence Powered Web Application To Predict Cover Crop Biomass, Aime Christian Tuyishime, Andrea Basche Mar 2022

Seabem: An Artificial Intelligence Powered Web Application To Predict Cover Crop Biomass, Aime Christian Tuyishime, Andrea Basche

Honors Theses

SEABEM, the Stacked Ensemble Algorithms Biomass Estimator Model, is a web application with a stacked ensemble of Machine Learning (ML) algorithms running on the backend to predict cover crop biomass for locations in Sub-Saharan. The SEABEM model was developed using a previously developed database of crop growth and yield that included site characteristics such as latitude, longitude, soil texture (sand, silt, and clay percentages), temperature, and precipitation. The goal of SEABEM is to provide global farmers, mainly small-scale African farmers, the knowledge they need before practicing and benefiting from cover crops while avoiding the expensive and time-consuming operations that come …


An Intelligent Distributed Ledger Construction Algorithm For Iot, Charles Rawlins, Jagannathan Sarangapani Jan 2022

An Intelligent Distributed Ledger Construction Algorithm For Iot, Charles Rawlins, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Blockchain is the next generation of secure data management that creates near-immutable decentralized storage. Secure cryptography created a niche for blockchain to provide alternatives to well-known security compromises. However, design bottlenecks with traditional blockchain data structures scale poorly with increased network usage and are extremely computation-intensive. This made the technology difficult to combine with limited devices, like those in Internet of Things networks. In protocols like IOTA, replacement of blockchain's linked-list queue processing with a lightweight dynamic ledger showed remarkable throughput performance increase. However, current stochastic algorithms for ledger construction suffer distinct trade-offs between efficiency and security. This work proposed …


Modeling Crash Severity And Collision Types Using Machine Learning, Amit Kumar, Hari Krishnan Melempat Kalapurayil Jan 2022

Modeling Crash Severity And Collision Types Using Machine Learning, Amit Kumar, Hari Krishnan Melempat Kalapurayil

Publications

Traffic safety analysis is the fundamental step for reducing economic, social, and environmental cost incurred due to traffic accidents. The essence of traffic safety is understanding the factors affecting crash occurrence, injury severity and collision type and their underlying relationships and predict-prevent future crash instances. Crash injury severity studies in past have utilized numerous statistical, econometric and Machine Learning (ML) and Artificial Intelligence (AI) tools to extract the underlying relationship between the crash causal factors and the consequent severity or collision type. The study aims to explore the Multi-Label Classification (MLC) tool from the domain of Artificial Intelligence (AI) for …


Hybridization Of Biologically Inspired Algorithms For Discrete Optimisation Problems, Elihu Essian-Thompson Jan 2022

Hybridization Of Biologically Inspired Algorithms For Discrete Optimisation Problems, Elihu Essian-Thompson

Dissertations

In the field of Optimization Algorithms, despite the popularity of hybrid designs, not enough consideration has been given to hybridization strategies. This paper aims to raise awareness of the benefits that such a study can bring. It does this by conducting a systematic review of popular algorithms used for optimization, within the context of Combinatorial Optimization Problems. Then, a comparative analysis is performed between Hybrid and Base versions of the algorithms to demonstrate an increase in optimization performance when hybridization is employed.


A Survey Of Machine Learning Techniques For Video Quality Prediction From Quality Of Delivery Metrics, Obinna Izima, Ruairí De Fréin, Ali Malik Nov 2021

A Survey Of Machine Learning Techniques For Video Quality Prediction From Quality Of Delivery Metrics, Obinna Izima, Ruairí De Fréin, Ali Malik

Articles

A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions …