Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Australian Institute for Innovative Materials - Papers

2016

Solar

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A High Energy Density Solar Rechargeable Redox Battery, Mohammad Ali Mahmoudzadeh, Ashwin R. Usgaocar, Joseph Giorgio, David L. Officer, Gordon G. Wallace, John D. W Madden Jan 2016

A High Energy Density Solar Rechargeable Redox Battery, Mohammad Ali Mahmoudzadeh, Ashwin R. Usgaocar, Joseph Giorgio, David L. Officer, Gordon G. Wallace, John D. W Madden

Australian Institute for Innovative Materials - Papers

An integrated solar energy conversion and storage system is presented using a dye sensitized electrode in a redox battery structure. A stable discharge voltage is shown with high areal energy storage capacity of 180 W h cm-2 by choosing iodide/polysulfide as the pair of active materials matched with permeable porous electrodes. The solar rechargeable battery system offers a higher round-trip efficiency and potential cost savings on fabrication compared to individual devices.


Ambient Synthesis Of One-/Two-Dimensional Cuagse Ternary Nanotubes As Counter Electrodes Of Quantum-Dot-Sensitized Solar Cells, Xin Qi Chen, Yang Bai, Zhen Li, Lian Zhou Wang, S X. Dou Jan 2016

Ambient Synthesis Of One-/Two-Dimensional Cuagse Ternary Nanotubes As Counter Electrodes Of Quantum-Dot-Sensitized Solar Cells, Xin Qi Chen, Yang Bai, Zhen Li, Lian Zhou Wang, S X. Dou

Australian Institute for Innovative Materials - Papers

2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. One-/two-dimensional ternary CuAgSe nanotubes (NTs) were successfully prepared from copper selenide (Cu2-xSe) NTs at room temperature within a short reaction time by the facile cation-exchange approach. Cation exchange leads to the transformation of the crystal structure from cubic into orthorhombic and/or tetragonal with good retention of morphology. The exchange reactions are spontaneous owing to large negative changes of the Gibbs free energy. The effects of parameters such as reaction time, precursor source, and precursor ratio on the exchange reaction were investigated. The resultant CuAgSe NTs were explored as counter electrodes (CEs) of …