Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Interfacial Polymerization For Colorimetric Labeling Of Protein Expression In Cells, Jacob L. Lilly, Phillip R. Sheldon, Liv J. Hoversten, Gabriela Romero, Vivek Balasubramaniam, Brad J. Berron Dec 2014

Interfacial Polymerization For Colorimetric Labeling Of Protein Expression In Cells, Jacob L. Lilly, Phillip R. Sheldon, Liv J. Hoversten, Gabriela Romero, Vivek Balasubramaniam, Brad J. Berron

Chemical and Materials Engineering Faculty Publications

Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric …


Field-Limited Migration Of Li-Ions In Li-Ion Battery, Fuqian Yang Nov 2014

Field-Limited Migration Of Li-Ions In Li-Ion Battery, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

The migration of Li-ions in lithium-ion battery cannot be simply described by Fick's second law; the interactions among ionic migration, field, and stress need to be taken into account when analyzing the migration of Li-ions. Using the theory of thermal activation process, the flux for ionic migration under concurrent action of electric field and mechanical stress is found to be a nonlinear function of the gradient of electric potential and the gradient of stress. Electric field can either accelerate or retard the growth of the lithiation layer, depending on polarity of the field.


The Stochastic Dynamics Of Tethered Microcantilevers In A Viscous Fluid, Brian A. Robbins, Milad Radiom, William A. Ducker, John Y. Walz, Mark R. Paul Oct 2014

The Stochastic Dynamics Of Tethered Microcantilevers In A Viscous Fluid, Brian A. Robbins, Milad Radiom, William A. Ducker, John Y. Walz, Mark R. Paul

Chemical and Materials Engineering Faculty Publications

We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether …


Oxidation-Resistant, Solution-Processed Plasmonic Ni Nanochain-SioX (X < 2) Selective Solar Thermal Absorbers, Xiaobai Yu, Xiaoxin Wang, Qinglin Zhang, Juchuan Li, Jifeng Liu Aug 2014

Oxidation-Resistant, Solution-Processed Plasmonic Ni Nanochain-SioX (X < 2) Selective Solar Thermal Absorbers, Xiaobai Yu, Xiaoxin Wang, Qinglin Zhang, Juchuan Li, Jifeng Liu

Chemical and Materials Engineering Faculty Publications

Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiOx (x < 2) and Ni nanochain-SiO2 selective solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600 °C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al2O3 selective solar thermal absorbers, which readily oxidize at 450 °C. The SiOx (x < 2) and SiO2 matrices are derived from hydrogen silsesquioxane and tetraethyl orthosilicate precursors, respectively, which comprise Si-O cage-like …


A Non-Destructive Method For Measuring The Mechanical Properties Of Ultrathin Films Prepared By Atomic Layer Deposition, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Mark W. Verbrugge Aug 2014

A Non-Destructive Method For Measuring The Mechanical Properties Of Ultrathin Films Prepared By Atomic Layer Deposition, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Mark W. Verbrugge

Chemical and Materials Engineering Faculty Publications

The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al2O3 films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple …


Correlation Between Microstructure And Thermionic Electron Emission From Os-Ru Thin Films On Dispenser Cathodes, Phillip D. Swartzentruber, Thomas John Balk, Michael P. Effgen Jul 2014

Correlation Between Microstructure And Thermionic Electron Emission From Os-Ru Thin Films On Dispenser Cathodes, Phillip D. Swartzentruber, Thomas John Balk, Michael P. Effgen

Chemical and Materials Engineering Faculty Publications

Osmium-ruthenium films with different microstructures were deposited onto dispenser cathodes and subjected to 1000 h of close-spaced diode testing. Tailored microstructures were achieved by applying substrate biasing during deposition, and these were evaluated with scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy before and after close-spaced diode testing. Knee temperatures determined from the close-spaced diode test data were used to evaluate cathode performance. Cathodes with a large {10-11} Os-Ru film texture possessed comparatively low knee temperatures. Furthermore, a low knee temperature correlated with a low effective work function as calculated from the close-spaced diode data. It is proposed …


Porous Nanocomposites With Integrated Internal Domains: Application To Separation Membranes, Wenle Li, John Y. Walz Mar 2014

Porous Nanocomposites With Integrated Internal Domains: Application To Separation Membranes, Wenle Li, John Y. Walz

Chemical and Materials Engineering Faculty Publications

Asymmetric membranes with layered structure have made significant achievements due to their balanced properties and multi-functionalities that come from a combination of multiple layers. However, issues such as delamination and substructure resistance are generated by the intrinsic layered structure. Here, we present a strategy to integrate the traditional layered structure into an asymmetric but continuous porous network. Through infiltrations of microparticles and nanoparticles to targeted regions, active domains are created inside the porous scaffold versus having them applied externally. The fabricated internal active domains are highly adjustable in terms of its dimensions, pore size, and materials. We demonstrate that it …