Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Apr 2015

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Apr 2015

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Apr 2015

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Mar 2015

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Jason R. Hattrick-Simpers

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Luminescence Mechanisms In Quaternary AlXInYGa1-X-YN Materials, Mee-Yi Ryu, C. Q. Chen, E. Kuokstis, J. W. Yang, Grigory Simin, M. Asif Khan Feb 2015

Luminescence Mechanisms In Quaternary AlXInYGa1-X-YN Materials, Mee-Yi Ryu, C. Q. Chen, E. Kuokstis, J. W. Yang, Grigory Simin, M. Asif Khan

Grigory Simin

Low-temperature photoluminescence investigations have been carried out in the quaternary AlInGaN epilayers and AlInGaN/AlInGaN multiple quantum wells (MQWs) grown by pulsedmetalorganic chemical-vapor deposition (PMOCVD). With increasing excitation power density, the emission peaks in both AlInGaN epilayers and MQWs show a strong blueshift and theirlinewidths increase. The luminescence of the samples grown by PMOCVD is attributed to recombination of carriers/excitons localized at band-tail states. We also demonstrate theluminescence properties of AlInGaN and AlGaN materials grown by a pulsed atomic-layerepitaxy and conventional MOCVD, respectively.