Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Stitch Fiber Comparison For Improvement Of Interlaminar Fracture Toughness In Stitched Composites, Kwek Tan, N. Watanabe, Y. Iwahori Apr 2015

Stitch Fiber Comparison For Improvement Of Interlaminar Fracture Toughness In Stitched Composites, Kwek Tan, N. Watanabe, Y. Iwahori

Dr. Kwek-Tze Tan

In this study, strain energy release rates are measured and compared for laminated composites reinforced by through-thickness stitching using different stitch fiber materials — Carbon, Kevlar, and Vectran. Strain energy release rates are evaluated experimentally using the DCB test and validated computationally using FEA. The FE model of the stitched composite incorporates a novel four-step stitch fracture process, namely: interfacial debonding, slack absorption, fiber breakage, and pull-out friction. The FE predictions of GIC show good agreement with the experimental results. It is revealed that the relationship between G IC and stitch density, or stitch thread volume fraction for all …


Free-Standing Single-Walled Carbon Nanotube/Sno2 Anode Paper For Flexible Lithium-Ion Batteries, Lukman Noerochim, Jia-Zhao Wang, Shulei Chou, David Wexler Feb 2013

Free-Standing Single-Walled Carbon Nanotube/Sno2 Anode Paper For Flexible Lithium-Ion Batteries, Lukman Noerochim, Jia-Zhao Wang, Shulei Chou, David Wexler

Shulei Chou

Free-standingsingle-walledcarbonnanotube/SnO2 (SWCNT/SnO2) anodepaper was prepared by vacuum filtration of SWCNT/SnO2 hybrid material which was synthesized by the polyol method. From field emission scanning electron microscopy and transmission electron microscopy, the CNTs form a three-dimensional nanoporous network, in which ultra-fine SnO2 nanoparticles, which had crystallite sizes of less than 5 nm, were distributed, predominately as groups of nanoparticles on the surfaces of singlewalled CNT bundles. Electrochemical measurements demonstrated that the anodepaper with 34 wt.% SnO2 had excellent cyclic retention, with the high specific capacity of 454 mAh g−1 beyond 100 cycles at a current …


Irradiation Si On Carbon Nanotube Paper As A Flexible Anode Material For Lithium-Ion Batteries, Shulei Chou, Mihail Ionescu, Jia-Zhao Wang, Brad Winton, Hua Liu Feb 2013

Irradiation Si On Carbon Nanotube Paper As A Flexible Anode Material For Lithium-Ion Batteries, Shulei Chou, Mihail Ionescu, Jia-Zhao Wang, Brad Winton, Hua Liu

Shulei Chou

Silicon single walled carbon nanotube composite paper was modified by low energy ion implantation using 5i to obtain a flexible composite paper. Raman and FE-SEM results show that structure of SWCNT could be destroyed by the implantation. Electrochemical measurements display that the implanted SI can improve the specific capacity and the reversible capacity of CNT paper. After 50 cycles, the specific capacity of 5Hmplanted CNT paper is 30 per cent higher than the pristine CNT.


One-Step Spray Pyrolysis Synthesized Cuo-Carbon Composite Combined With Carboxymethyl Cellulose Binder As Anode For Lithium-Ion Batteries, Chao Zhong, Jia-Zhao Wang, Xuan-Wen Gao, Shulei Chou, Konstantin Konstantinov, Hua Liu Nov 2012

One-Step Spray Pyrolysis Synthesized Cuo-Carbon Composite Combined With Carboxymethyl Cellulose Binder As Anode For Lithium-Ion Batteries, Chao Zhong, Jia-Zhao Wang, Xuan-Wen Gao, Shulei Chou, Konstantin Konstantinov, Hua Liu

Shulei Chou

Copper oxide-carbon composite with hollow sphere structure has been synthesized by a one-step spray pyrolysis method and tested as anode material for lithium-ion batteries. Different analytical methods, including X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and systematic electrochemical tests were performed. The results demonstrate that the CuO-carbon composite in conjunction with carboxymethyl cellulose (CMC) binder has an excellent electrochemical performance, with a capacity of 577 mAh g-1 up to 100 cycles. The usage of the water soluble binder, CMC, not only obviously improves the electrochemical performance, but also makes the electrode fabrication process much easier and …


Drilling Of Carbon Composites Using A One Shot Drill Bit. Part 2 Empirical Modeling Of Maximum Thrust Force, Marta Fernandes, Christopher Cook Aug 2012

Drilling Of Carbon Composites Using A One Shot Drill Bit. Part 2 Empirical Modeling Of Maximum Thrust Force, Marta Fernandes, Christopher Cook

Christopher Cook

In order to extend tool life and improve quality of hole drilling in carboncomposite materials, a better understanding of ‘oneshot’ hole drilling is required. This paper describes the development of an empirical model of the maximum thrust force and torque produced during drilling of carbon fiber with a ‘oneshot’ drillbit. Shaw's simplified equations are adapted in order to accommodate for tool wear and used to predict maximum thrust force and torque in the drilling of carboncomposite with a ‘oneshot’ drillbit. The mathematical model is dependent on the number of holes drilled previously, the geometry of the drillbit, the feed used …


Hollow Hematite Nanosphere/Carbon Nanotube Composite: Mass Production And Its High-Rate Lithium Storage Properties, Shulei Chou, Jiazhao Wang, Zhixin Chen, Hua Liu, S. Dou May 2012

Hollow Hematite Nanosphere/Carbon Nanotube Composite: Mass Production And Its High-Rate Lithium Storage Properties, Shulei Chou, Jiazhao Wang, Zhixin Chen, Hua Liu, S. Dou

Shulei Chou

Spray pyrolysis was used to produce hollow hematite (α-Fe(2)O(3)) nanosphere (HHNS)/carbon nanotube (CNT) composite on a large scale. The method offers simplicity, high productivity, versatility, low cost, and suitability for industry. The structure is composed of hollow nanospheres in a network of CNTs. The possible formation mechanism of hollow α-Fe(2)O(3) nanospheres is due to the rapid evaporation of water and the super-hydrophobicity of the CNT surface. The electrochemical tests show that the HHNS/CNT composite is a promising lithium storage material in terms of high capacity (∼700 mAh g(-1)), good high-rate capability, and good cycle life (up to 150 cycles). The …


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon Jun 2011

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon

Latika Menon

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.