Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

A Novel Path Loss Forecast Model To Support Digital Twins For High Frequency Communications Networks, James Marvin Taylor Jr Jul 2020

A Novel Path Loss Forecast Model To Support Digital Twins For High Frequency Communications Networks, James Marvin Taylor Jr

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The need for long-distance High Frequency (HF) communications in the 3-30 MHz frequency range seemed to diminish at the end of the 20th century with the advent of space-based communications and the spread of fiber optic-connected digital networks. Renewed interest in HF has emerged as an enabler for operations in austere locations and for its ability to serve as a redundant link when space-based and terrestrial communication channels fail. Communications system designers can create a “digital twin” system to explore the operational advantages and constraints of the new capability. Existing wireless channel models can adequately simulate communication channel conditions with …


Cmos Radioactive Isotope Identification With Multichannel Analyzer And Embedded Neural Network, Samuel Murray Jul 2018

Cmos Radioactive Isotope Identification With Multichannel Analyzer And Embedded Neural Network, Samuel Murray

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

A radiation detection and identification system is designed and implemented to perform gamma ray spectroscopy on radioactive sources and identify which isotopes are present in the sources. A multichannel analyzer is implemented on an ASIC to process the signal produced from gamma rays detected by a scintillator and photomultiplier tube and to quantize the gamma ray energies to build a histogram. A fast, low memory embedded neural network is implemented on a microcontroller ASIC to identify the isotopes present in the gamma ray histogram produced by the multichannel analyzer in real time.

Advisors: Sina Balkir and Michael Hoffman


Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh Dec 2017

Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Low-temperature co-fired ceramic (LTCC), and glass fiber reinforced polymer (GFRP) printed circuit boards (PCBs) are two materials used for the packaging of electronics. The excellent mechanical and electrical properties of LTCC, combined with the ability to embed passive components offer superior radio frequency (RF) performance and device miniaturization for high-frequency applications. Due to its unique properties, LTCC provides superior performance in applications as diverse as military radar, imaging systems, advanced automotive sensing, telecommunications, and satellites. The use of LTCC in these applications has created a demand for the micromachining of holes, channels, and cavities with specific geometries and structures. Likewise, …


Application-Aware Cognitive Multi-Hop Wireless Networking Testbed And Experiments, Trenton T. Evans Jul 2017

Application-Aware Cognitive Multi-Hop Wireless Networking Testbed And Experiments, Trenton T. Evans

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, we present a new architecture for application-aware cognitive multihop wireless networks (AC-MWN) with testbed implementations and experiments. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low cost way. Multihop wireless networks can be deployed quickly and flexibly without a fixed infrastructure. In presented new architecture, we study backbone routing schemes with network cognition, routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on …


5g-Ucda Multi Antenna-To-Logical Cell Circular Fifo Mapping Strategy For High-Speed Train Wireless Communications, Subharthi Banerjee Apr 2017

5g-Ucda Multi Antenna-To-Logical Cell Circular Fifo Mapping Strategy For High-Speed Train Wireless Communications, Subharthi Banerjee

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

2020 is the target year for the roll out of fifth generation wireless communication methodologies. The commercial vendors have characterized 5G as a collection of disruptive set of technologies to provide high throughput, low latency communication supporting a variety of services, i.e., machine to machine communication to next generation base stations and vehicle-to-vehicle communication to radio-over-fiber and high mobility channels. High-speed train wireless communication channels as a subset of high mobility channels have their clear advantages and disadvantages considering other vehicular channels. The speed of high-speed trains is going to reach 500km/hr and with Hyperloop it may reach 1000km/hr. LTE …


Design And Implementation Of Reconfigurable Patch Antennas For Wireless Communications, Fei He Dec 2016

Design And Implementation Of Reconfigurable Patch Antennas For Wireless Communications, Fei He

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Reconfigurable patch antennas have drawn a lot of research interest for future wireless communication systems due to their ability to adapt to changes of environmental conditions or system requirements. The features of reconfigurable patch antennas, such as enhanced bandwidths, operating frequencies, polarizations, radiation patterns, etc., enables accommodation of multiple wireless services.

The major objective of this study was to design, fabricate and test two kinds of novel reconfigurable antennas: a dual-frequency antenna array with multiple pattern reconfigurabilities, and a pattern and frequency reconfigurable Yagi-Uda patch antenna. Comprehensive parametric studies were carried out to determine how to design these proposed patch …


Wireless Communications Under Qos Constraints: Energy Efficiency, Power And Rate Control, And Throughput, Deli Qiao May 2012

Wireless Communications Under Qos Constraints: Energy Efficiency, Power And Rate Control, And Throughput, Deli Qiao

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation deals with various issues in wireless communications under statistical quality of service (QoS) constraints. Effective capacity, which provides the maximum constant arrival rate that a wireless channel can sustain while satisfying statistical QoS constraints, is adopted as the performance metric. Energy efficiency of point-to-point links is first studied by characterizing the spectral efficiency-bit energy tradeoff in the low-power and wideband regimes. Different transmission strategies (with variable or fixed rate) and power policies are studied. Then, the effective capacity region for fading multiple-access channels (MAC) is investigated for different transmission strategies: Superposition coding with successive decoding and time division …


An Rf Cmos Implementation Of An Adaptive Filter For Narrow-Band Interferer Suppression In Uwb Systems, Markus Both Dec 2011

An Rf Cmos Implementation Of An Adaptive Filter For Narrow-Band Interferer Suppression In Uwb Systems, Markus Both

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Ultra-wideband (UWB) technology is a new type of technology for wireless communication that is based on the transmission of low power sub-nanosecond pulses. UWB communication utilizes a large bandwidth that overlaps and is coexistent with other wireless communication standards that can be also considered as narrow-band interferers. Because UWB systems are highly susceptible to narrow-band interferers, there is a demand for interferer suppression. An adaptive filter consisting of a two-element diversity receiver that performs minimum mean square error combining (MMSE) by the LMS algorithm is proposed. Thereby the elements of the LMS algorithm as well as the receiver LNA were …


Power Control And Security Games For Wireless Communication Networks, Bo Liang Nov 2011

Power Control And Security Games For Wireless Communication Networks, Bo Liang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, game theoretic analysis of wireless communication networks has been performed. Game theory provides valuable tools can be used to solve problem of conflict and cooperation in wireless communication networks. Game theoretic tools can be applied to multiple layers of wireless networks. First, we consider power control issues at the physical layer of wireless networks. A game theoretic analysis for resource allocation policies in fading interference channels in the presence of quality of service (QoS) constraints is performed. We model a two player non-cooperative power control game and assume that both transmitters and receivers know the channel side …


Low Complexity Feature Extraction For Classification Of Harmonic Signals, Peter William Sep 2011

Low Complexity Feature Extraction For Classification Of Harmonic Signals, Peter William

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain.The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a stand-alone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics’ amplitudes of …


Cyclostationary Detection For Ofdm In Cognitive Radio Systems, Marcos E. Castro Aug 2011

Cyclostationary Detection For Ofdm In Cognitive Radio Systems, Marcos E. Castro

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Research on cognitive radio systems has attracted much interest in the last 10 years. Cognitive radio is born as a paradigm and since then the idea has seen contribution from technical disciplines under different conceptual layers. Since then improvements on processing capabilities have supported the current achievements and even made possible to move some of them from the research arena to markets.

Cognitive radio implies a revolution that is even asking for changes in current business models, changes at the infrastructure levels, changes in legislation and requiring state of the art technology.

Spectrum sensing is maybe the most important part …


Wireless Communications And Cognitive Radio Transmissions Under Quality Of Service Constraints And Channel Uncertainty, Sami Akin May 2011

Wireless Communications And Cognitive Radio Transmissions Under Quality Of Service Constraints And Channel Uncertainty, Sami Akin

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, we study wireless communications and cognitive radio transmissions under quality of service (QoS) constraints and channel uncertainty. Initially, we focus on a time-varying Rayleigh fading channel and assume that no prior channel knowledge is available at the transmitter and the receiver. We investigate the performance of pilot-assisted wireless transmission strategies. In particular, we analyze different channel estimation techniques, including single-pilot minimum mean-square-error (MMSE) estimation, and causal and noncausal Wiener filters, and analyze efficient resource allocation strategies. Subsequently, we study the training-based transmission and reception schemes over a priori unknown, Rayleigh fading relay channels in which the fading …


Finite Tree-Based Decoding Of Low-Density Parity-Check Codes, Eric T. Psota Jan 2010

Finite Tree-Based Decoding Of Low-Density Parity-Check Codes, Eric T. Psota

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Low-density parity-check codes are commonly decoded using iterative message-passing decoders, such as the min-sum and sum-product decoders. Computer simulations demonstrate that these suboptimal decoders are capable of achieving low probability of bit error at signal-to-noise ratios close to capacity. However, current methods for analyzing the behavior of the min-sum and sum-product decoders fails to produce usable bounds on the probability of bit error. Thus, the resulting probability of bit error when using these decoders remains largely unknown for signal-to-noise ratios beyond the reach of simulation. For this reason, it is worth considering alternative methods for decoding low-density parity-check codes. New …