Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt Nov 2020

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization ormachine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities to those of …


3d-Printed Leg Design And Modification For Improved Support On A Quadruped Robot, Jasmin S. Collins Sep 2020

3d-Printed Leg Design And Modification For Improved Support On A Quadruped Robot, Jasmin S. Collins

Undergraduate Research & Mentoring Program

The Agile and Adaptive Robotics Lab aims to uncover the biological and physiological complexities in animal agility and adaptive control, which can be replicated through robotics and provide further applications in biology and medicine. One project within the lab focuses on understanding structure, actuation, and control through the modeling of a canine quadruped robot.

The AARL has developed a full-body quadruped robot with artificial muscles that control limb movement and a body that is built from 3D-printed parts. This specific project involved modification of these existing parts to (a) minimize deflections in the front legs, causing unwanted lateral and abduction/adduction …


Exoskeleton, Vinu Casper, Liliana Fitzpatrick Apr 2019

Exoskeleton, Vinu Casper, Liliana Fitzpatrick

Engineering and Technology Management Student Projects

This is a research about the marketing plan for exoskeleton wearable devices. The objective is to provide a meaningful Customer Value Proposition to the prospective customers.The Samsung company SWOT analysis is the basis for a marketing strategy. The exoskeleton features and market definition is included in the analysis. A competitor analysis of homogeneus exoskeletons providers is included to review the current market. An exhaustive customer analysis was performed to identify the customer needs as the input for the marketing plan development. The potential market was identified to learn about the exoskeleton market share opportunity. The exoskeleton global market is analyzed …


An Exploration Of Software Defined Radio And Gnu Radio Companion For Use In Drone-To-Drone Communication, Amanda K. H. Voegtlin May 2018

An Exploration Of Software Defined Radio And Gnu Radio Companion For Use In Drone-To-Drone Communication, Amanda K. H. Voegtlin

Undergraduate Research & Mentoring Program

In a world that increasingly relies on automation and intelligent robotics, there is a need for drones to expand their independence and adaptability in navigating their environments. One approach to this problem is the use of wireless communication between units in order to coordinate their sensor data and build real-time maps of the environments they are navigating. However, especially indoors, relying on a fixed transmission tower to provide data to the units faces connectivity challenges.

The purpose of this research was to determine the fitness of an on-drone assembly that uses the the NI B200mini software-defined radio board and Gnu …


Real-Time Object Detection And Tracking On Drones, Tu Le May 2018

Real-Time Object Detection And Tracking On Drones, Tu Le

Undergraduate Research & Mentoring Program

Unmanned aerial vehicles, also known as drones, have been more and more widely used in recent decades because of their mobility. They appear in many applications such as farming, search and rescue, entertainment, military, and so on. Such high demands for drones lead to the need of developments in drone technologies. Next generations of commercial and military drones are expected to be aware of surrounding objects while flying autonomously in different terrains and conditions. One of the biggest challenges to drone automation is the ability to detect and track objects of interest in real-time. While there are many robust machine …


An Emotional Mimicking Humanoid Biped Robot And Its Quantum Control Based On The Constraint Satisfaction Model, Quay Williams, Scott Bogner, Michael Kelley, Carolina Castillo, Martin Lukac, Dong Hwa Kim, Jeff S. Allen, Mathias I. Sunardi, Sazzad Hossain, Marek Perkowski May 2007

An Emotional Mimicking Humanoid Biped Robot And Its Quantum Control Based On The Constraint Satisfaction Model, Quay Williams, Scott Bogner, Michael Kelley, Carolina Castillo, Martin Lukac, Dong Hwa Kim, Jeff S. Allen, Mathias I. Sunardi, Sazzad Hossain, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

The paper presents a humanoid robot that responds to human gestures seen by a camera. The behavior of the robot can be completely deterministic as specified by a Finite State Machine that maps the sensor signals to the effector signals. This model is further extended to the constraints-satisfaction based model that links robots vision, motion, emotional behavior and planning. One way of implementing this model is to use adiabatic quantum computer which quadratically speeds-up every constraint problem and will be thus necessary to solve large problems of this type. We propose to use the remotely-connected Orion system by DWAVE Corporation.


Constructive Induction Machines For Data Mining, Marek Perkowski, Stanislaw Grygiel, Qihong Chen, Dave Mattson Mar 1999

Constructive Induction Machines For Data Mining, Marek Perkowski, Stanislaw Grygiel, Qihong Chen, Dave Mattson

Electrical and Computer Engineering Faculty Publications and Presentations

"Learning Hardware" approach involves creating a computational network based on feedback from the environment (for instance, positive and negative examples from the trainer), and realizing this network in an array of Field Programmable Gate Arrays (FPGAs). Computational networks can be built based on incremental supervised learning (Neural Net training) or global construction (Decision Tree design). Here we advocate the approach to Learning Hardware based on Constructive Induction methods of Machine Learning (ML) using multivalued functions. This is contrasted with the Evolvable Hardware (EHW) approach in which learning/evolution is based on the genetic algorithm only.