Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

The Application Of Systems Engineering Principles To Model Lithium Ion Battery Voltage, George Gibbs Dec 2012

The Application Of Systems Engineering Principles To Model Lithium Ion Battery Voltage, George Gibbs

Master's Theses

The objective of this project is to present a Lithium Ion battery voltage model derived using systems engineering principles. This paper will describe the details of the model and the implementation of the model in practical use in a power system. Additionally, the model code is described and results of the model output are compared to battery cell test data. Finally, recommendations for increased model fidelity and capability are summarized.

The modeling theory has been previously documented in the literature but detailed implementation and application of the modeling theory is shown. The detailed battery cell test voltage profiles are proprietary; …


An Experimental Investigation Of A Goldschmied Propulsor, Joshua Roepke Aug 2012

An Experimental Investigation Of A Goldschmied Propulsor, Joshua Roepke

Master's Theses

A wind tunnel investigation of an axisymmetric bluff body, known as a Goldschmied propulsor, was completed. This model conceptually combines boundary layer control and boundary layer ingestion into a single complementary system that is intended to use energy to reduce the axial force on the body by eliminating separation and increasing the pressure recovery aft of the body’s maximum thickness. The goal of the current project was to design, fabricate, and fully document the performance of a wind tunnel model incorporating the Goldschmied propulsor concept and complete an examination of its aerodynamic performance. The investigation took place at California Polytechnic …


Electric Aircraft Propulsion System, Austin J. Doupe Jun 2012

Electric Aircraft Propulsion System, Austin J. Doupe

Aerospace Engineering

This report specifies the purpose, assembly, operation, and data collection of a testing apparatus to characterize small electric aircraft propulsion systems designed for commercial use. This apparatus was constructed with the goal of determining overall system characteristics and efficiencies. The apparatus was pushed to a safety limit as deemed by advisor John Dunning and the results of the experiment were an output power of 3.2kW (25% of max rated power) and a system efficiency of 58.6%, both of which occurred at 2200 RPM. Currently the apparatus needs improvement. It should have an upgraded structure to mount to (instead of the …


High-Fidelity Low-Thrust Trajectory Determination Research And Analysis, Tyler Hill Jun 2012

High-Fidelity Low-Thrust Trajectory Determination Research And Analysis, Tyler Hill

Aerospace Engineering

This document discusses a numerical analysis method for low thrust trajectory propagation known as the proximity quotient or Q-Law. The process uses a Lyapunov feedback control law developed by Petropoulos[1] to propagate trajectories of spacecraft by minimizing the user defined function at the target orbit. A simplified propagator is created from the core mechanics of this method in MATLAB and tested in several user defined cases to demonstrate its capabilities. Several anomalies arose in test cases where variations in eccentricity, inclination, right ascension of the ascending node, and argument of perigee were specified. Solutions to these anomalies are discussed …


Preliminary Design Of A Laboratory Cylindrical Hall-Effect Thruster, Scott Mcgrail, Sam Parker Jun 2012

Preliminary Design Of A Laboratory Cylindrical Hall-Effect Thruster, Scott Mcgrail, Sam Parker

Aerospace Engineering

A 3-cm cylindrical Hall thruster with permanent magnets was designed and modeled. The goal was to design a Hall thruster for Cal Poly’s propulsion laboratory of similar size and performance as Cal Poly’s MiXI thruster. The design process began with an investigation into the physics of Hall thrusters and selection of certain thruster parameters. The selected parameters were the diameter and depth of the channel, the total power input to the system, the discharge supply voltage, the cathode voltage, and the propellant flow rates to the anode and cathode. These parameters were used to determine the operational characteristics of the …


Ramjet Fuel System, Kelsey Selin Jun 2012

Ramjet Fuel System, Kelsey Selin

Aerospace Engineering

No abstract provided.


De-Orbiting Upper Stage Rocket Bodies Using A Deployable High Altitude Drag Sail, Robert A. Hawkins Jr., Joseph A. Palomares Jun 2012

De-Orbiting Upper Stage Rocket Bodies Using A Deployable High Altitude Drag Sail, Robert A. Hawkins Jr., Joseph A. Palomares

Aerospace Engineering

This report examines the effectiveness of a drag sail to de-orbit upper stage rocket bodies. Many other perturbations contribute to the de-orbiting of these rocket bodies, and these perturbations will also be discussed briefly. This paper will show the length of time needed to force the altitudes of various launch vehicle stages with varying drag area sizes to less than 100 km. The upper stage of the Delta IV launch vehicle in an orbit with an altitude of 500 km will naturally de-orbit in 720 days but when equipped with a 20 m2 drag sail, it will de-orbit in …


Hapss, Hybrid Aircraft Propulsion System Synthesis, Michael W. Green Jun 2012

Hapss, Hybrid Aircraft Propulsion System Synthesis, Michael W. Green

Master's Theses

Hybrid Aircraft Propulsion System Synthesis (HAPSS) is a computer program that sizes and analyzes pure-series hybrid electric propulsion systems for aircraft. The development of this program began during a NASA SBIR contract, in conjunction with Empirical Systems Aerospace (ESAero), with the creation of a propulsion fan design tool. Since the completion of this contract in July 2010, the HAPSS program has been expanded to combine the many aspects of a hybrid propulsion system such as the propulsive fans, electric motors, generators, and controllers, and the internal combustion engines.

This thesis describes the benefits and drawbacks of aircraft hybrid propulsion systems …


Implementation Of A ¼ Inch Hollow Cathode Into A Miniature Xenon Ion Thruster (Mixi), David Wayne Knapp Jun 2012

Implementation Of A ¼ Inch Hollow Cathode Into A Miniature Xenon Ion Thruster (Mixi), David Wayne Knapp

Master's Theses

Over the last decade, miniature ion thruster development has remained an active area of research do to its low power, low thrust, and high efficiency, however, due to several technical issues; a flight level miniature ion thruster has proved elusive. This thesis covers the design, fabrication, assembly, and test of an altered version of the Miniature Xenon Ion thruster (MiXI), originally developed by lead engineer Dr. Richard Wirz, at the California Institute of Technology (Caltech). In collaboration with Dr. Wirz, MiXI-CP-V3 was developed at Cal Poly San Luis Obispo with the goal of implementing of a ¼ inch hollow cathode …


Primary And Secondary Flow Interactions In The Mixing Duct Of A 2-D Planer Air Augmented Rocket, Martin Roy Popish May 2012

Primary And Secondary Flow Interactions In The Mixing Duct Of A 2-D Planer Air Augmented Rocket, Martin Roy Popish

Master's Theses

Experiments were conducted on the Cal Poly air augmented rocket (AAR) in order to characterize two-dimensional flowfield phenomenon occurring in the mixing duct. The testing utilized a direct connect system where high pressure nitrogen is fed into the combustion chamber, to form a primary flow. The high pressure nitrogen is then expanded through a nozzle, with an area ratio of 22 and an exit area of 0.75 in2, up to Mach 4.3. Secondary air is entrained from a plenum chamber which is used to create a lower stagnation pressure for the secondary flow. The two flows mix in …


Investigating Various Propulsion Systems For An External Attachment For A Controlled-Manual De-Orbit Of The Hubble Space Telescope, Nelson De Guia Mar 2012

Investigating Various Propulsion Systems For An External Attachment For A Controlled-Manual De-Orbit Of The Hubble Space Telescope, Nelson De Guia

Aerospace Engineering

This reports explains the results for a proposed senior project. This project concerns the Hubble Space Telescope, and exploring the possibility of having an external propulsion attachment for a manual de-orbit. The Hubble Space Telescope was proposed to return to Earth via the Space Shuttle. Although, through the current U.S. Space Administration, the Space Shuttle has been retired before the Hubble Space Telescope was retrieved. By completing this project, the results could provide insight to what type of propulsion would best de-orbit the Hubble upon its retirement. Different propulsion systems were considered to attempt to determine an optimal attachment, varying …


Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez Mar 2012

Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez

Aerospace Engineering

Composite materials are engineered by combining two or more constituent materials with significantly different physical or chemical properties in such a way that the constituents are still distinguishable, and not fully blended. Due to today’s high rising prices of gasoline and aviation fuel costs, many manufacturers have turned to the use of lightweight composites in their designs due to the advantages of the composite material, which include outstanding strength, excellent durability, high heat resistance, and significant weight reduction that the composite material properties hold. The purpose of this project is to design and construct a composite structure for an electrically-powered …


Experimental Investigation Of A 2-D Air Augmented Rocket: High Pressure Ratio And Transient Flow-Fields, Josef S. Sanchez Mar 2012

Experimental Investigation Of A 2-D Air Augmented Rocket: High Pressure Ratio And Transient Flow-Fields, Josef S. Sanchez

Master's Theses

A 2-D Air Augmented Rocket, the Cal Poly Air Augmented Rocket (CPAAR) Test Apparatus operating as a mixer-ejector was tested to investigate high stagnation pressure ratio and transient flow fields of an ejector. The primary rocket ejector was supplied with high pressure nitrogen at a maximum chamber pressure of 1758 psia and a maximum mass flow rate of 1.4 lb/s. The secondary flow air was entrained from a fixed volume plenum chamber producing pressures as low as 3.3 psia. The maximum total pressure ratio achieved was 221. The original CPAAR apparatus was rebuilt re-instrumented and capability expanded. A fixed volume …


Design And Analysis Of A Reusable N2o-Cooled Aerospike Nozzle For Labscale Hybrid Rocket Motor Testing, Daniel Joseph Grieb Feb 2012

Design And Analysis Of A Reusable N2o-Cooled Aerospike Nozzle For Labscale Hybrid Rocket Motor Testing, Daniel Joseph Grieb

Master's Theses

A reusable oxidizer-cooled annular aerospike nozzle was designed for testing on a labscale PMMA-N20[1] hybrid rocket motor at Cal Poly-SLO.[2] The detailed design was based on the results of previous research involving cold-flow testing of annular aerospike nozzles and hot-flow testing of oxidizer-cooled converging-diverging nozzles. In the design, nitrous oxide is routed to the aerospike through a tube that runs up the middle of the combustion chamber. The solid fuel is arranged in an annular configuration, with a solid cylinder of fuel in the center of the combustion chamber and a hollow cylinder of fuel lining …