Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer Science

2020

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Engineering

Noise And Detectivity Limits In Organic Shortwave Infrared Photodiodes With Low Disorder, Zhenghui Wu, Ning Li, Naresh Eedugurala, Jason D. Azoulay, Dong Seok Leem, Tse Nga Ng Dec 2020

Noise And Detectivity Limits In Organic Shortwave Infrared Photodiodes With Low Disorder, Zhenghui Wu, Ning Li, Naresh Eedugurala, Jason D. Azoulay, Dong Seok Leem, Tse Nga Ng

Faculty Publications

© 2020, The Author(s). To achieve high detectivity in infrared detectors, it is critical to reduce the device noise. However, for non-crystalline semiconductors, an essential framework is missing to understand and predict the effects of disorder on the dark current. This report presents experimental and modeling studies on the noise current in exemplar organic bulk heterojunction photodiodes, with 10 donor–acceptor combinations spanning wavelength between 800 and 1600 nm. A significant reduction of the noise and higher detectivity were found in devices using non-fullerene acceptors (NFAs) in comparison to those using fullerene derivatives. The low noise in NFA blends was attributed …


Investigation Of Electrospun Nanofibers For Separation Applications, Shu-Ting Chen Dec 2020

Investigation Of Electrospun Nanofibers For Separation Applications, Shu-Ting Chen

Graduate Theses and Dissertations

Electrospun membranes are an attractive alternative to flat sheet membranes as absorbent with numerous advantages like high porosity, large specific surface area and ease of functionalization. This doctoral dissertation focuses on fabricating novel polymeric membrane adsorbents for protein separations and ammonium ion removal. Three distinctly different preparation methods including UV-initiated polymerization, atom transfer radical polymerization, and mixed-matrix formation, have been employed to fabricate the electrospun membranes. Overall, this study aimed to develop electrospun membranes with excellent separation efficiency for application in protein purification and ammonium ion removal.

Chapter 2 details the stepwise development of weak anion exchange membranes and subsequent …


Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo Oct 2020

Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo

LSU Master's Theses

Additive manufacturing allows the rapid process of complex objects with excellent design flexibility. However, the products often exhibit poor mechanical properties when pure polymer is applied as printable material. In this work, we demonstrate that printability of polymer can be dramatically improved when particle filler is added to form reinforced polymer composites. Furthermore, the interaction between filler and polymer matrix leads to the enhancement in mechanical properties of the printed product. The material reinforcement induced by addition of fillers enables the wide application of polymer composites to print structures with unique features. In the printing of silica-reinforced pNIPAM composite, we …


Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu Jul 2020

Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu

Doctoral Dissertations

This thesis aims to extend the understanding and explore the application of temperature-responsive hydrogel systems by integrating microelectromechanical systems (MEMS). Stimuli-responsive hydrogel systems are immensely investigated and applied in numerous fields, and interfacing with micro- and nano-fabrication techniques will open up more possibilities. In Chapter 2, the first biologically relevant, in vitro cell stretching device based on hydrogel surface instability was developed. This dynamic platform is constructed by embedding micro-heater devices under temperature-responsive surface-attached hydrogels. The fast and regional temperature change actuates the stretching and relaxation of the seeded human artery smooth muscle cell (HASMC) via controllable surface creasing instability. …


Sequence Control Of Complex Coacervation, Li-Wei Chang Jul 2020

Sequence Control Of Complex Coacervation, Li-Wei Chang

Doctoral Dissertations

Complex coacervation is a liquid-liquid phase separation driven by the complexation of oppositely charged polyelectrolytes. The resulting coacervate phase has been used for many applications, such as underwater adhesives, drug delivery, food and personal care products. There also has been increasing interest in coacervate-like droplets occurring in biological systems. The majority of these “membraneless organelles” involve a combination of intrinsically-disordered proteins and RNA, and phase separate due to long-range charge effects and short-range hydrophobic effects. While evolution has optimized the self-assembly of these types of biological polymers, our ability to design such materials remains limited, in part because the relevant …


Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer Jul 2020

Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer

Doctoral Dissertations

The assembly of long-chain polymers into an ordered state is a process that has puzzled polymer scientists for several decades. A process that is largely controlled by the strength of intermolecular attractions in small molecular systems, this crystallization in the case of polymers is controlled by a competition between the aforementioned force of attraction between monomers and the formidable conformational entropy of polymer chains. Any factor that affects this conformational entropy, whether that is an equilibrium thermodynamic factor or a kinetic factor, has the ability to control polymer crystallization. In this thesis, we focus on understanding the underlying kinetic processes …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov Jun 2020

Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov

Dissertations, Theses, and Capstone Projects

Despite revolutionizing the world of portable electronics, the contemporary lithium-ion battery (LIB) suffers from challenges associated with the cost, safety, and environmental impact of transition metal oxide-based intercalation cathodes. To alleviate these issues, naturally occurring organic molecules may serve as sustainable alternatives to traditional inorganic cathode materials. The electrochemical properties of organic compounds are derived from redox-active functional groups containing oxygen, nitrogen and sulfur. Additionally, these functional groups are capable of coordinating metal ions beyond lithium, allowing for compatibility with sodium-ion batteries (SIBs) and other earth abundant metal-based energy storage systems. However, despite competitive performance against commercialized cathode materials, much …


Design, Fabrication And Applications Of Efficient Conductive Polymers For Photocatalytic Antimicrobials, Chunbo Liu May 2020

Design, Fabrication And Applications Of Efficient Conductive Polymers For Photocatalytic Antimicrobials, Chunbo Liu

Electronic Thesis and Dissertation Repository

Designing new antimicrobial surfaces which are effective under visible light irradiation without leaching toxic ions is a current challenge for effective disinfection. A new polymeric system poly[2,11’-thiophene-ethylene-thiophene-alt-2,5-(3-carboxyl) -thiophene] (PTET-T- COOH) with broad light absorption was synthesized. Its photocatalytic disinfection performance against staphylococcus aureus (S. aureus) and streptococcus suis (S. suis) was evaluated, showing over 99.999% inactivation (higher than 5-log inactivation) in 2 h for both bacteria, under visible light irradiation at a low concentration of PTET-T-COOH (0.1 mg/mL). In addition, a PTET-T-COOH/polyurethane (PU) polymeric coating was designed and fabricated. Chemical attachment was confirmed between PTET-T-COOH and PU using various thermophysical …


Experimental Performance Evaluation Of A Hyper-Branched Polymer Electrolyte For Rechargeable Li-Air Batteries, Susanta K. Das, Joel Berry, Abhijit Sarkar May 2020

Experimental Performance Evaluation Of A Hyper-Branched Polymer Electrolyte For Rechargeable Li-Air Batteries, Susanta K. Das, Joel Berry, Abhijit Sarkar

Mechanical Engineering Publications

A hyper-branched polymer (HBP) electrolyte is synthesized for rechargeable lithium-air (Li-air) battery cell and experimentally evaluated its performance in actual battery cell environment. Several real-world battery cells were fabricated with synthesized HBP electrolyte, pure lithium metal as anode and an oxygen permeable air cathode to evaluate reproducibility of the rechargeable Li-air battery cell. The effect of various conditions such as various HBP based electrolytes, discharge current −0.1~0.5 mA, cathode preparation processes and carbon contents on the battery cell performance were experimentally evaluated using the fabricated battery cells under dry air condition. Detailed HBP electrolyte synthesis procedures and experimental performance evaluation …


Engineering Ionomer Materials For Addressing Ohmic Resistances In Electrochemical Desalination And Waste Heat Recovery, Varada Menon Palakkal May 2020

Engineering Ionomer Materials For Addressing Ohmic Resistances In Electrochemical Desalination And Waste Heat Recovery, Varada Menon Palakkal

LSU Doctoral Dissertations

Water scarcity and energy availability present important challenges that need to be addressed in the coming centuries. In the front of water technologies, desalting brackish water is of extreme importance for thermal electric power plants, chemical manufacturing plants, and other industrial operations that treat and reuse their water utilities. Membrane capacitive deionization (MCDI) is an energy efficient desalination technique that has drawn attention from commercial entities. Most material research studies on MCDI focus on enhancing electrode performance while little emphasis is given to rationale design of ion-exchange membranes (IEMs). In this work, the ionic conductivity, permselectivity, and thickness for three …


Characterizing Non-Linear Structural, Mechanical, And Volumetric Properties Of Aliphatic And Aromatic Thermosets, Brendan Robert Ondra May 2020

Characterizing Non-Linear Structural, Mechanical, And Volumetric Properties Of Aliphatic And Aromatic Thermosets, Brendan Robert Ondra

Doctoral Dissertations

A unifying theme throughout this dissertation employs advanced experimental mechanics, including the design and development of new instruments, testing techniques, and analysis strategies. Chapter 1 covers the design and development of a new instrument for polymer and composite characterization. More specifically, a bi-fluidic, confining-fluid, pressurizable dilatometer (referred to herein as the BFCF-PVT). Whereas both classical and contemporary confining-fluid type pressurizable dilatometers utilize a bellows and / or piston system along with a Linear Variable Displacement Transducer to apply pressure and track volume changes, the BFCF-PVT that was designed and built utilizes a fluid-fluid interface (composed of two immiscible fluids that …


Investigating The Effect Of Hydrophilic Block Length On The Co-Assembly Behavior Of Amphiphilic Triblock Copolymers, Alexandra M. Garrett May 2020

Investigating The Effect Of Hydrophilic Block Length On The Co-Assembly Behavior Of Amphiphilic Triblock Copolymers, Alexandra M. Garrett

Honors Theses

Polymer vesicles and micelles have been of interest in the scientific community for the past few decades due to potential biomedical applications in areas such as drug delivery, nanoreactors, and biosensing. Polymer vesicles and micelles are formed through the self-assembly of amphiphilic block copolymers. The objective of this project is to gain a better understanding of the influence of hydrophilic block copolymer length and composition in controlling the resulting morphologies from the co-assembly of triblock copolymers. First, a hydrophobic block composed of poly(methyl acrylate) was synthesized using reversible addition-fragmentation chain-transfer (RAFT) polymerization mediated by a difunctional chain-transfer agent. The block …


Bulk Properties Correlated To The Hydrogen Bond Organization In Dendrimers, Hyperbranched Polymers, And Linear Polymers, Beibei Chen May 2020

Bulk Properties Correlated To The Hydrogen Bond Organization In Dendrimers, Hyperbranched Polymers, And Linear Polymers, Beibei Chen

Dissertations

Although a lot of research was conducted on dendritic polymers, our understanding of their structure-property is still limited. Our previous study, which focused on a family of dendritic polymers based on 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) as a monomer, discovered unique hydrogen bond organizations contributed by their dendritic structures. However, the influence of the H-bond organization on bulk properties has yet to be understood. The goal of this dissertation is to elucidate the correlation between the H-bond organization with the dielectric and volumetric properties of bis-MPA based dendritic polymers, with an emphasis on developing a fundamental understanding of to what extent …


Nanomechanical Characterization Of Fuel Cell Ionomers, Jackson Goddard Apr 2020

Nanomechanical Characterization Of Fuel Cell Ionomers, Jackson Goddard

UCARE Research Products

Energy sustainability can be achieved by improving and adopting clean energy technologies, and a better nanoscale understanding of ionomer-catalyst layers could lead to increased efficiency of proton exchange membrane fuel cells. Samples of Nafion ( Perfluorosulfonic acid ionomer) and PFIA (Perfluoroimide acid ionomer) of varying film thickness were prepared and then studied using contact resonance force microscopy. It was determined that storage and loss modulus increase as relative humidity increases and ionomer film thickness goes below 100 nm. Furthermore, in this specific study, the similar storage and loss modulus of Nafion and PFIA could be attributed to similar backbone structure …


Light Downshifting Zinc Oxide-Ethylene Vinyl Acetate Nanocomposite Greenhouse Films, David V. Hiscott Mar 2020

Light Downshifting Zinc Oxide-Ethylene Vinyl Acetate Nanocomposite Greenhouse Films, David V. Hiscott

Electronic Thesis and Dissertation Repository

One method to increase the productivity of greenhouse agriculture is to increase the amount of photosynthetically available light within. This was accomplished through the use of nanocomposite greenhouse film comprised of light downshifting zinc oxide quantum dots and ethylene vinyl acetate copolymer. As this material will be used on a commodity scale, two different approaches – a large batch process and continuous plug flow reactor – were designed for mass production of zinc oxide. A design of experiment was performed to determine which synthesis parameters contribute more strongly to the quantum dot’s growth. This was done for a small-scale batch …


Surface Driven Flows : Liquid Bridges, Drops And Marangoni Propulsion, Samrat Sur Mar 2020

Surface Driven Flows : Liquid Bridges, Drops And Marangoni Propulsion, Samrat Sur

Doctoral Dissertations

Molecules sitting at a free liquid surface against vacuum or gas have weaker binding than molecules in the bulk. The missing (negative) binding energy can therefore be viewed as a positive energy added to the surface itself. Since a larger area of the surface contains larger surface energy, external forces must perform positive work against internal surface forces to increase the total area of the surface. Mathematically, the internal surface forces are represented by surface tension, defined as the normal force per unit of length. One common manifestation of surface tension is the difference in pressure it causes across a …


Zips Precious Plastics: Plastic Extruder, Patrick Cole Jan 2020

Zips Precious Plastics: Plastic Extruder, Patrick Cole

Williams Honors College, Honors Research Projects

This project's goal was to design and build an affordable desktop filament extruder that can precisely and consistently extrude filament to a certain tolerance acceptable for 3D printers using wasted printing material. The group is partnering with an on campus organization focusing on engineering applications for sustainable futures. Zips Precious Plastics is a student run design group that intends to bring an innovation space on campus to help educate students about the importance of a closed looped system within plastic manufacturing.


Polymeric Nanocomposite Membranes With Phosphorene Based Pore Fillers For Fouling Control, Joyner Eke Jan 2020

Polymeric Nanocomposite Membranes With Phosphorene Based Pore Fillers For Fouling Control, Joyner Eke

Theses and Dissertations--Chemical and Materials Engineering

Phosphorene is a two-dimensional material exfoliated from bulk phosphorus. Specifically, relevant to the field of membrane science, the band gap of phosphorene provides it with potential photocatalytic properties, which could be explored in making reactive membranes able to control the accumulation of compounds on the surface during filtration, or fouling. Another reason phosphorene is a promising candidate as a membrane material additive is due to its catalytic properties which can potentially destroy foulants on the membrane surface.

The first goal of this study was to develop an innovative and robust membrane able to control and reverse fouling with minimal changes …


Innovative Sustainable Wood Preservatives From Pulp And Paper Industry Byproduct, Raisa Carmen Andeme Ela Jan 2020

Innovative Sustainable Wood Preservatives From Pulp And Paper Industry Byproduct, Raisa Carmen Andeme Ela

Dissertations, Master's Theses and Master's Reports

In the modern forest industry, the need for bio-based, renewable, and environmentally-benign wood preservatives is increasing. Preservatives are used to prevent or limit decay and there has been an increasing interest in developing wood preservatives from renewable materials. To support the need for bio-based, environmentally-friendly preservatives, this work employed kraft lignin as a raw material to produce a novel bio-based wood preservative.

For the first project, a statistical design of experiments approach in Minitab® was used to study how fractionation process variables during acid precipitation of lignin influence the lignin mass yield and characteristics. After precipitating lignin from black liquor, …


Exploring Shape-Memory Polymers From Silicone I And 1,10-Decanediol Blends, Kristina Nguyen Jan 2020

Exploring Shape-Memory Polymers From Silicone I And 1,10-Decanediol Blends, Kristina Nguyen

Williams Honors College, Honors Research Projects

Shape-memory polymers (SMPs) are polymeric materials that have dual-shape capabilities. These materials can deform to a temporary shape and will recover to their permanent original shape when induced by an external stimulus such as heat. The purpose of this project was to investigate the thermo-mechanical properties and shape-memory behavior of various blends of Silicone I and 1,10-decanediol to determine if a unique blend of these components can be utilized to develop shape memory surface relief patterns.

Careful iterative experiments were used to develop a robust procedure for the fabrication of crosslinked sheets of blends of Silicone I and 1,10-decanediol over …


Methods For Film Coating Electrospun Fibers, Kristopher Dejean Jan 2020

Methods For Film Coating Electrospun Fibers, Kristopher Dejean

Williams Honors College, Honors Research Projects

Electrospinning uses high voltages to form polymer nanofiber membranes. These membranes have potential for use in filtration, tissue engineering, drug delivery, and catalysis. The nonwoven fiber mat is malleable but has a low tensile strength compared to a solid film of the same polymer. Joining the fibers with a thin film is desired to balance the strength and flexibility. Three methods of producing a film on fiber membrane were tested. The techniques are spraying then melting, spin coating, and dip coating. Electrospinning setup conditions, solvent ratios, damage to fibers, and spin coating speeds were determined. Research was abruptly stopped and …


Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan Jan 2020

Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan

Theses and Dissertations--Chemical and Materials Engineering

The detoxification of chlorinated organics from groundwater, such as trichloroethylene (TCE), tetrachloroethylene (PCE), polychlorinated biphenyl (PCB) and carbon tetrachloride (CTC), is a challenging area. Reductive dechlorination has been investigated using iron and iron-based nanoparticles, such as bare Fe, sulfidized Fe (S-Fe) and palladized Fe (Pd-Fe). However, issues including particle agglomeration, difficulties in recycling and particle leaching have been reported to hinder the application and wide usage of these techniques. The integration of nanoparticles and membranes can address these issues because of the large surface area, stability, and the potential for versatile functionalities. In this study, commercial polyvinylidene difluoride (PVDF) microfiltration …


Methods For Film Coating Electrospun Fibers, Kristopher Dejean Jan 2020

Methods For Film Coating Electrospun Fibers, Kristopher Dejean

Williams Honors College, Honors Research Projects

Electrospinning uses high voltages to form polymer nanofiber membranes. These membranes have potential for use in filtration, tissue engineering, drug delivery, and catalysis. The nonwoven fiber mat is malleable but has a low tensile strength compared to a solid film of the same polymer. Joining the fibers with a thin film is desired to balance the strength and flexibility. Three methods of producing a film on fiber membrane were tested. The techniques are spraying then melting, spin coating, and dip coating. Electrospinning setup conditions, solvent ratios, damage to fibers, and spin coating speeds were determined. Research was abruptly stopped and …


Enhanced Methane Hydrate Formation Using Promoters For Natural Gas Storage And Transportation Application, Katipot Inkong Jan 2020

Enhanced Methane Hydrate Formation Using Promoters For Natural Gas Storage And Transportation Application, Katipot Inkong

Chulalongkorn University Theses and Dissertations (Chula ETD)

Solidified natural gas (SNG) is an alternative technology for natural gas storage and transportation in the clathrate hydrate formed. It has higher volumetric energy storage with the ease to handle not to mention its safety. Effects of different hydrate promoters, including methyl ester sulfonate (MES), tetrahydrofuran (THF), hollow silica (HS), and sodium dodecyl sulfate (SDS), on the methane hydrate formation was investigated. All experiments were performed in an unstirred tank reactor at desired experimental conditions. The results indicated that all promoters significant enhanced the hydrate formation both kinetics and methane uptake compared with pure water. The increase in the MES …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Self-Assembled Metal Nanoparticle/Polymer Nanocomposites As Nanoreactors For One-Pot Reactions, Andrew Harrison Jan 2020

Self-Assembled Metal Nanoparticle/Polymer Nanocomposites As Nanoreactors For One-Pot Reactions, Andrew Harrison

Theses and Dissertations

Polymer nanoreactors incorporating gold nanoparticle catalysts were self-assembled via Flash Nanoprecipitation. The incorporated gold nanoparticles maintained catalytic activity, which was evaluated using reduction of 4-nitrophenol with sodium borohydride as a model reaction. The diffusion coefficient for 4-nitrophenol was determined by NMR and used to calculate the second Damköhler number, which indicated that the systems were not diffusion limited. Despite similar diffusion coefficients, catalytic performance was strongly affected by the co-precipitant. For example, the apparent reaction rate per surface area using castor oil was over 8-fold greater than polystyrene. Thus, we measured the partition coefficient of 4-nitrophenol between water and castor …


Evaluating Rubber Aging On Tire Durability: Quantitative Evaluation Of Rubber Aging, Brian Auffenberg Jan 2020

Evaluating Rubber Aging On Tire Durability: Quantitative Evaluation Of Rubber Aging, Brian Auffenberg

Williams Honors College, Honors Research Projects

Rubber is considered one of the most important polymers in the world due to its variety of uses. There are many different conditions that can affect the useful life of rubber. The purpose of this research was to determine how the mechanical loading on the rubber may affect the aging of the rubber. The scope of the project was to focus on the rubber used for tire production. The research was limited to focusing only on rubber supplied by industry mentors which was styrene-butadiene rubber. By varying the length of time for testing as well as the temperature of the …


Design Of Pigments For Use In “Cool” Coatings, Tyler Laughorn Jan 2020

Design Of Pigments For Use In “Cool” Coatings, Tyler Laughorn

Williams Honors College, Honors Research Projects

This project was focused on the development and testing of several novel pigments that exhibit high NIR-reflectance and therefore show potential for use in “cool” coatings. A “cool” coating will reflect more solar radiation than other standard coatings, and so a coated structure would require less energy to keep cool. Four sets of pigments were synthesized: Co1-xMgxCr2O4 (teal), Co0.25Mg0.75Cr2-yAlyO4 (blue), Ti1-x-yNixSbyO2 (yellow), and Cr2-xFexO3 (black). NIR and TSR values were then measured …


A Comparison Of Fiber Mat Thickness Measurement Techniques Using Laser Interferometry And Water Displacement, Ryan Seabeck Jan 2020

A Comparison Of Fiber Mat Thickness Measurement Techniques Using Laser Interferometry And Water Displacement, Ryan Seabeck

Williams Honors College, Honors Research Projects

Polymer fiber mats may often be very thin which leads to complications in measuring thickness. The thickness of fiber mats, however, is crucial in understanding their behavior. Thickness affects how well the mat works as a filter as well as the pressure drop across the mat, and herein lies the need for accurate measurement techniques. Currently two of the available techniques for measuring mat thickness are by laser interferometry[1] and by buoyancy force when submerged in water[2]. Instead of measuring the buoyancy force in this experiment, an enclosure intended to measure the thickness via water displacement was …