Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …


Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli Mar 2020

Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli

Publications and Research

In electrocoalescence, an electric field is applied to a dispersion of conducting water droplets in a poorly conducting oil to force the droplets to merge in the direction of the field. Electrocoalescence is used in petroleum refining to separate water from crude oil and in droplet-based microfluidics to combine droplets of water in oil and to break emulsions. Using a microfluidic design to generate a two-dimensional (2D) emulsion, we demonstrate that electrocoalescence in an opaque crude oil can be visualized with optical microscopy and studied on an individual droplet basis in a chamber whose height is small enough to make …


Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala Jan 2020

Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala

Engineering Technology Faculty Publications

The lack of thermodynamic consistency is a well-recognized problem in the single-component pseudopotential lattice Boltzmann models which prevents them from replicating accurate liquid and vapor phase densities; i.e., current models remain unable to exactly match coexisting density values predicted by the associated thermodynamic model. Most of the previous efforts had attempted to solve this problem by introducing tuning parameters, whose determination required empirical trial and error until acceptable thermodynamic consistency was achieved. In this study, we show that the problem can be alternatively solved by properly designing customized equations of state (EOSs) that replace any cubic EOS of choice during …