Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Theses/Dissertations

2015

Institution
Keyword
Publication

Articles 31 - 60 of 84

Full-Text Articles in Engineering

Optical Bistability With Two Serially Integrated Inp-Soas On A Chip, Michael Edward Plascak May 2015

Optical Bistability With Two Serially Integrated Inp-Soas On A Chip, Michael Edward Plascak

Graduate Theses - Physics and Optical Engineering

A photonic switch using two series-connected, reverse-biased semiconductor optical amplifiers integrated onto a single device has been proposed and switching operation has been verified experimentally. The switching operates on two principles; an electrical bistability arising from the connection of two p-i-n structures in series, and the quantum confined Stark effect in reverse-biased multiple quantum well structures. The result is an electroabsorption modulation of the light through the SOAs due to the alternating voltage states. The system simultaneously produces outputs with both inverted and non-inverted hysteresis behavior, with experimental switching speeds demonstrated up to 400 kHz for a reverse-bias voltage of …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Novel Two-Dimensional Nanomaterials And Their Gas Sensing Properties, Haihui Pu May 2015

Novel Two-Dimensional Nanomaterials And Their Gas Sensing Properties, Haihui Pu

Theses and Dissertations

Graphene, an atomic thin two-dimensional (2D) material with C atoms arranged in a honeycomb lattice, has sparked an unprecedented research interest across various scientific communities since its initial mechanical isolation in 2004. The linear energy dispersion with respect to the momentum within 1 eV around the Fermi level at the high symmetric K (Dirac) points in the Brillouin zone renders graphene a wonder material for scientists. However, graphene’s semimetallic nature significantly limits its high-end applications, e.g., in digital logic circuits. Therefore, continued efforts in opening the band gap for graphene and in searching for novel 2D semiconducting materials are rewarding. …


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari May 2015

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute May 2015

Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute

Dissertations & Theses (Open Access)

Calcific and hemorrhagic foci of susceptibility are frequently encountered on routine brain MR studies. Both etiologies cause variations in local magnetic field strength, leading to dark regions on the MR images that cannot be classified. Single-energy CT (SECT) can be used to identify lesions with attenuation over 100 HU as calcific, however lesions with lower attenuation cannot be reliably identified. While calcific lesions are unlikely to cause harm, hemorrhagic lesions carry a risk of subsequent intracranial bleeding; as such, identification of hemorrhage is vital in preventing the inappropriate use of anticoagulant medications in patients with hemorrhagic lesions.

Given there currently …


High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita May 2015

High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita

UNLV Theses, Dissertations, Professional Papers, and Capstones

Even though mullite occurs rarely in nature, it is perhaps one of the most important phases in both traditional and advanced ceramics. Existing and emerging applications of mullite and mullite-type materials include: high-temperature composites, aerospace materials, ballistic shielding for military applications and even non-linear optical materials. There are many uncertainties regarding the basic physical properties of mullite-type materials, particularly in terms of their high-pressure structural stability and mechanical behavior that are important to address for emerging applications of mullites as engineering materials. This work is the first reported comprehensive investigation of the high –pressure structural behavior of several different mullites …


Phase Dynamics Of Locset Control Methodology, Brendan Neschke May 2015

Phase Dynamics Of Locset Control Methodology, Brendan Neschke

Masters Theses

Single-mode fiber amplifiers produce diffraction-limited beams very efficiently. Maximum beam intensity requires that an array of these amplifiers have their beams coherently combined at the target. Optical path differences and noise adversely affect beam quality. An existing closed loop phase control methodology, called the locking of optical coherence by single-detector electronic-frequency tagging (LOCSET), corrects phase errors in real time by electronically detecting path length differences and sending signals to lithium niobate phase adjusters. Broadening the line-width using “jitter” of the input signal can increase the output power of an individual amplifier by suppressing nonlinearity. The system dynamics of LOCSET are …


Modular Approach To Spintronics, Kerem Yunus Camsari Apr 2015

Modular Approach To Spintronics, Kerem Yunus Camsari

Open Access Dissertations

There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this thesis is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiments we establish …


Experimental Constraints On Exotic Spin-Dependent Interactions Using Specialized Materials, Rakshya Khatiwada Apr 2015

Experimental Constraints On Exotic Spin-Dependent Interactions Using Specialized Materials, Rakshya Khatiwada

Open Access Dissertations

Various theories predict the possible existence of symmetry violating forces with mesoscopic range interactions from mm-m [1]. These forces can arise from the coupling of a spin 0 boson to spin 1/2 fermions through scalar (gs) and pseudoscalar (gp) couplings. We discuss two experiments that can investigate these interactions using nucleon rich, impressively low magnetic susceptibility (5-100 times lower than pure water) test masses and electron-spin rich, polarized test masses (spin density: 10^20 h/cm3 ). The first experiment looks for a P-odd, T-odd interaction potential proportional to (S.r) where S is the spin of one particle and r is the …


Transport Studies In Graphene-Based Materials And Structures, Jiuning Hu Apr 2015

Transport Studies In Graphene-Based Materials And Structures, Jiuning Hu

Open Access Dissertations

Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some theoretical/experimental studies about the thermal, electronic and thermoelectric transport properties in graphene-based systems. We employ the molecular dynamic simulations to study the thermal transport in graphene nanoribbons (GNRs) exhibiting various properties, including chirality dependent thermal conductivity, thermal rectification in asymmetric GNRs, defects and isotopic engineering of the thermal conductivity and negative differential thermal conductance (NDTC) at large temperature biases. …


Computational Optical Imaging: Applications In Synthetic Aperture Imaging, Phase Retrieval, And Digital Holography, Dennis Joseph Lee Apr 2015

Computational Optical Imaging: Applications In Synthetic Aperture Imaging, Phase Retrieval, And Digital Holography, Dennis Joseph Lee

Open Access Dissertations

Computational imaging has become an important field, as a merger of both algorithms and physical experiments. In the realm of microscopy and optical imaging, an important application is the problem of improving resolution, which is bounded by wavelength and numerical aperture according to the classic diffraction limit. We will investigate the resolution enhancement of phase objects such as transparent biological cells. One key challenge is how to measure phase experimentally. Standard interferometric techniques have the drawback of being sensitive to environmental vibrations and temperature fluctuations, and they use a reference arm which requires more space and cost. Non-holographic methods provide …


Circular Bessel Field Statistics And The Pursuit Of Far-Subwavelength Resolution, Yulu Chen Apr 2015

Circular Bessel Field Statistics And The Pursuit Of Far-Subwavelength Resolution, Yulu Chen

Open Access Dissertations

The statistical description of wave propagation in random media is important for many applications. While polarized light in systems with weakly interacting scatterers and sufficient overall scatter has zero-mean circular Gaussian statistics, the underlying assumptions break down in the Anderson localization and weakly scattering regimes. Although probability density functions for wave intensity and amplitude exist beyond Gaussian statistics, suitable statistical descriptions for the field with strong and weak random scatter were unknown. The first analytical probability density function for the field that is effective in both the Anderson localization regime and the weakly scattering regime is derived by modeling the …


Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson Apr 2015

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson

Open Access Dissertations

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation.^ The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth …


Generation Of Multi-Charged Aluminum Ions From Femtosecond Laser Induced Plasma, Frederick Guy Wilson Apr 2015

Generation Of Multi-Charged Aluminum Ions From Femtosecond Laser Induced Plasma, Frederick Guy Wilson

Electrical & Computer Engineering Theses & Dissertations

Laser-induced plasma multi-charged ion (MCI) sources have gained in popularity over the last thirty years with the advent of reliable, high peak power, short temporal pulse laser systems. Utilization of laser-induced plasma MCI sources allows for production of a wide array of ion species from a variety of source target materials. In this thesis an investigation of the generation of MCis from an aluminum (Al) target source through laser-induced plasma from a femtosecond (fs) pulsed laser system is outlined and the results presented and analyzed. In order to characterize the production of the Al MCis resulting from the fs laser …


Development Of Superconducting Spoke Cavities For High-Velocity Applications, Christopher Shawn Hopper Apr 2015

Development Of Superconducting Spoke Cavities For High-Velocity Applications, Christopher Shawn Hopper

Physics Theses & Dissertations

To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to β0 ~ 0.6, but there is a growing interest in possible applications of spoke cavities for high-velocity applications. The first task is to explore the design parameter space for low-frequency, high-velocity, single- and double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. Once an electromagnetically optimized, high-velocity spoke cavity is designed, there are several other characteristics that need to be investigated. These include multipacting scenarios, higher-order mode excitation …


Visualizing Relationships Between Related Variables: Improving Physics Education Through D3.Js Network Visualizations, Stephanie Friend Mar 2015

Visualizing Relationships Between Related Variables: Improving Physics Education Through D3.Js Network Visualizations, Stephanie Friend

Liberal Arts and Engineering Studies

phiMap is a web application started by Cal Poly professors and students to aid professors in teaching physics. I developed Javascript visualizations for phiMap that serve to simplify the processes of both teaching and learning physics. These visualizations aim to present relationships between physics variables in an easy to understand manner, and they could eventually have a huge impact on physics education.


Liquid Crystal-Based Biosensors For The Detection Of Bile Acids, Sihui He Jan 2015

Liquid Crystal-Based Biosensors For The Detection Of Bile Acids, Sihui He

Electronic Theses and Dissertations

Bile acids are physiologically important metabolites, which are synthesized in liver as the end products of cholesterol metabolism and then secreted into intestine. They are amphiphilic molecules which play a critical role in the digestion and absorption of fats and fat-soluble vitamins through emulsification. The concentration of bile acids is an indicator for liver function. Individual suffering from liver diseases has a sharp increase in bile acid concentrations. Hence, the concentration level of bile acids has long been used as a biomarker for the early diagnosis of intestinal and liver diseases. Conventional methods of bile acid detection such as chromatography-mass …


High Efficiency And Wide Color Gamut Liquid Crystal Displays, Zhenyue Luo Jan 2015

High Efficiency And Wide Color Gamut Liquid Crystal Displays, Zhenyue Luo

Electronic Theses and Dissertations

Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. Recently, it faces strong competition from organic light emitting diode (OLED). In order to maintain a strong leader position, LCD camp has an urgent need to enrich the color performance and reduce the power consumption. This dissertation focuses on solving these two emerging and important challenges. In the first part of the dissertation we investigate the quantum dot (QD) technology to improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and grants LCD the capability to reproduce color vivid images. …


Entanglement And Coherence In Classical And Quantum Optics, Kumel Kagalwala Jan 2015

Entanglement And Coherence In Classical And Quantum Optics, Kumel Kagalwala

Electronic Theses and Dissertations

We explore the concepts of coherence and entanglement as they apply to both the classical and quantum natures of light. In the classical domain, we take inspiration from the tools and concepts developed in foundational quantum mechanics and quantum information science to gain a better understanding of classical coherence theory of light with multiple degrees of freedom (DoFs). First, we use polarization and spatial parity DoFs to demonstrate the notion of classical entanglement, and show that Bell's measure can serve as a useful tool in distinguishing between classical optical coherence theory. Second, we establish a methodical yet versatile approach called …


Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai Jan 2015

Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai

Dissertations, Master's Theses and Master's Reports - Open

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) …


Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana Jan 2015

Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana

Dissertations, Master's Theses and Master's Reports - Open

Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder …


Modeling And Simulation Of Microstructures, Mechanisms, And Diffraction Effects In Energy Materials: Ferroelectrics And Lithium Ion Battery Cathode Materials, Jie Zhou Jan 2015

Modeling And Simulation Of Microstructures, Mechanisms, And Diffraction Effects In Energy Materials: Ferroelectrics And Lithium Ion Battery Cathode Materials, Jie Zhou

Dissertations, Master's Theses and Master's Reports - Open

Ferroelectric materials, as a large family exploited for the application of sensors, transducers and random access memories, open up a remarkable ground both for fundamental science and industry. Dielectric and piezoelectric properties are of the most interest in ferroelectric materials, which motivate research to enhance ferroelectric properties based on various application purposes. Among the multitudinous candidates in ferroelectric family, pseudo binary solid solutions with ABO3 lattice structure attract special attention in virtue of their large strain response when applying external loading. Furthermore, existence of morphological phase boundary (MPB) on their phase diagrams shed light on tuning material compositions to …


Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng Jan 2015

Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng

Dissertations, Master's Theses and Master's Reports - Open

Structures, properties and functionalities of magnetic domain walls in thin film, nanowires and atomic chains are studied by micromagnetic simulations and ab initio calculations in this dissertation. For magnetic domain walls in thin films, we computationally investigated the dynamics of one-dimensional domain wall line in ultrathin ferromagnetic film, and the exponent α = 1.24 ± 0.05 is obtained in the creep regime near depinning force, indicating the washboard potential model is supported by our simulations. Furthermore, the roughness, creep, depinning and flow of domain wall line with commonly existed substructures driven by magnetic field are also studied. Our simulation results …


Conservation Laws And Electromagnetic Interactions, Veerachart Kajorndejnukul Jan 2015

Conservation Laws And Electromagnetic Interactions, Veerachart Kajorndejnukul

Electronic Theses and Dissertations

Aside from energy, light carries linear and angular momenta that can be transferred to matter. The interaction between light and matter is governed by conservation laws that can manifest themselves as mechanical effects acting on both matter and light waves. This interaction permits remote, precise, and noninvasive manipulation and sensing at microscopic levels. In this dissertation, we demonstrated for the first time a complete set of opto-mechanical effects that are based on nonconservative forces and act at the interface between dielectric media. Without structuring the light field, forward action is provided by the conventional radiation pressure while a backward movement …


Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee Jan 2015

Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee

Electronic Theses and Dissertations

Surface plasmon resonances of metal nanostructures have been studied intensely in recent years. The strong plasmon-mediated electric field enhancement and field confinement well beyond the diffraction limit has been demonstrated to improve the performance of optical devices including ultrasensitive sensors, light emitters, and optical absorbers. A plasmon resonance mode of particular recent interest is the gap plasmon resonance that occurs on closely spaced metallic structures. In contrast to plasmon resonances supported by isolated metal nanostructures, coupled nanostructures provide additional spectral and spatial control over the plasmon resonance response. For example, the resonance frequencies of metal nanoparticle dimers depend strongly on …


Photon Statistics In Disordered Lattices, Hasan Kondakci Jan 2015

Photon Statistics In Disordered Lattices, Hasan Kondakci

Electronic Theses and Dissertations

Propagation of coherent waves through disordered media, whether optical, acoustic, or radio waves, results in a spatially redistributed random intensity pattern known as speckle -- a statistical phenomenon. The subject of this dissertation is the statistics of monochromatic coherent light traversing disordered photonic lattices and its dependence on the disorder class, the level of disorder and the excitation configuration at the input. Throughout the dissertation, two disorder classes are considered, namely, diagonal and off-diagonal disorders. The latter exhibits disorder-immune chiral symmetry -- the appearance of the eigenmodes in skew-symmetric pairs and the corresponding eigenvalues in opposite signs. When a disordered …


Nonlinear Optical Response Of Simple Molecules And Two-Photon Semiconductor Lasers, Matthew Reichert Jan 2015

Nonlinear Optical Response Of Simple Molecules And Two-Photon Semiconductor Lasers, Matthew Reichert

Electronic Theses and Dissertations

This dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms is important for many applications including filamentation, white-light continuum generation, all-optical switching, and nonlinear spectroscopy. In this work the nonlinear dynamics of molecules are investigated in both liquid and gas phase with the recently …


Optical Propagation Of Self-Sustaining Wavefronts And Nonlinear Dynamics In Parabolic Multimode Fibers, Matthew Mills Jan 2015

Optical Propagation Of Self-Sustaining Wavefronts And Nonlinear Dynamics In Parabolic Multimode Fibers, Matthew Mills

Electronic Theses and Dissertations

The aim of this thesis is to introduce my work which has generally been focused on optical wavefronts that have the unusual property of resisting commonplace phenomena such as diffraction and dispersion. Interestingly, these special beams are found both in linear and nonlinear situations. For example, in the linear regime, localized spatio-temporal waves which resemble the spherical harmonic symmetries of the hydrogen quantum orbitals can simultaneously negotiate both diffractive and dispersive effects. In the nonlinear regime, dressed optical filaments can be arranged to propagate multi-photon produced plasma channels orders of magnitude longer than expected. The first portion of this dissertation …


Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez Jan 2015

Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez

Open Access Theses & Dissertations

Cadmium Telluride is a material widely used in terrestrial thin film photovoltaic applications due to its nearly ideal band gap (~1.5 eV) and high absorption coefficient. Due to its low manufacturing cost, this technology has the potential to become a significant energy resource if higher energy conversion efficiencies are achieved. However, the module efficiencies (~14%) are still far from the theoretical maximum (~30%) for this material in a single junction configuration. The reason behind this low performance is attributed to the high number of defects that are present within the device materials. The physics behind the formation mechanisms of these …


Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West Jan 2015

Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West

Open Access Dissertations

Current nanofabrication is almost exclusively limited to top-down, two-dimensional techniques. As technology moves more deeply into the nano-scale regime, fabrication of new devices with quasi three-dimensional geometries shows great potential. One excellent example of an emerging field that requires this type of non-conformal 3D fabrication technique is the field of Transformation Optics. This field involves transforming and manipulating the optical space through which light propagates. Arbitrarily manipulating the optical space requires advanced fabrication techniques, which are not possible with current two-dimensional fabrication technologies. One step toward quasi three-dimensional nanofabrication involves employing angled deposition allowing new growth mechanisms, and enabling a …