Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala Jan 2020

Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala

Engineering Technology Faculty Publications

The lack of thermodynamic consistency is a well-recognized problem in the single-component pseudopotential lattice Boltzmann models which prevents them from replicating accurate liquid and vapor phase densities; i.e., current models remain unable to exactly match coexisting density values predicted by the associated thermodynamic model. Most of the previous efforts had attempted to solve this problem by introducing tuning parameters, whose determination required empirical trial and error until acceptable thermodynamic consistency was achieved. In this study, we show that the problem can be alternatively solved by properly designing customized equations of state (EOSs) that replace any cubic EOS of choice during …


Experimental Verification Of Transparent Spin Mode In Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang Jan 2019

Experimental Verification Of Transparent Spin Mode In Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang

Engineering Technology Faculty Publications

High electron and ion polarizations are some of the key design requirements of a future Electron Ion Collider (EIC). The transparent spin mode, a concept inspired by the figure 8 ring design of JLEIC, is a novel technique for preservation and control of electron and ion spin polarizations in a collider or storage ring. It makes the ring lattice "invisible" to the spin and allows for polarization control by small quasi-static magnetic fields with practically no effect on the beam’s orbital characteristics. It offers unique opportunities for polarization maintenance and control in Jefferson Lab’s JLEIC and in BNL’s eRHIC. The …


Spin Response Function For Spin Transparency Mode Of Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang Jan 2019

Spin Response Function For Spin Transparency Mode Of Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang

Engineering Technology Faculty Publications

In the Spin Transparency (ST) mode of RHIC, the axes of its Siberian snakes are parallel. The spin tune in the ST mode is zero and the spin motion becomes degenerate: any spin direction repeats every particle turn. In contrast, the lattice of a conventional collider determines a unique stable periodic spin direction, so that the collider operates in the Preferred Spin (PS) mode. Contributions of perturbing magnetic fields to the spin resonance strengths in the PS mode are usually calculated using the spin response function. However, in that form, it is not applicable in the ST mode. This paper …


Quantitative Assessment Of Secondary Flows Of Single-Phase Fluid Through Pipe Bends, Z. Kaldy, O. Ayala Jan 2016

Quantitative Assessment Of Secondary Flows Of Single-Phase Fluid Through Pipe Bends, Z. Kaldy, O. Ayala

Engineering Technology Faculty Publications

Single-phase fluid flow was simulated passing through various three dimensional pipe elbows. The simulations varied by Reynolds number, curvature ratios, and sweep angles and were all conducted using the k-e model available in COMSOL Multiphysics 5.1. The intent of this research was to qualitatively assess the flow characteristics under several different conditions. Many similarities were seen especially when comparing curvature ratios, the vorticity location for the turbulent cases show near identical behavior at the elbow midsection. One of the variables quantified in this paper is the maximum secondary velocity module which shows increasing values until the midsection of the elbow.


Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala Jan 2016

Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala

Engineering Technology Faculty Publications

A simulated study of oil and water in 90 degree bend was carried on COMSOL 5.1 to characterize flow pattern and analyze the secondary flow. The Euler-Euler k-e Reynolds Averaged Navier-Stokes model was used to represent the fluid motion. Changes in the Reynolds number, curvature ratio and direction of gravity were made to evaluate the effects in the intensity of the secondary flow. In the end, it was possible to see that the bend direction does not affect the formation of secondary flow for Reynolds above 100,000. It appears that the fluid behavior on the pipe bend is strongly related …


Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang Jan 2015

Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang

Engineering Technology Faculty Publications

In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope ["An examination of forcing in direct numerical simulations of turbulence," Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds …


Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski Jan 2015

Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski

Engineering Technology Faculty Publications

Within the context of heavy particles suspended in a turbulent airflow, we study the effects of gravity on acceleration statistics and radial relative velocity (RRV) of inertial particles. The turbulent flow is simulated by direct numerical simulation (DNS) on a 2563 grid and the dynamics of O(106) inertial particles by the point-particle approach. For particles/droplets with radius from 10 to 60 µm, we found that the gravity plays an important role in particle acceleration statistics: (a) a peak value of particle acceleration variance appears in both the horizontal and vertical directions at a particle Stokes number …