Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Dc Electrokinetic Transport Of Cylindrical Cells In Straight Microchannels, Ye Ai, Ali Beskok, David T. Gauthier, Sang W. Joo, Shizhi Qian Jan 2009

Dc Electrokinetic Transport Of Cylindrical Cells In Straight Microchannels, Ye Ai, Ali Beskok, David T. Gauthier, Sang W. Joo, Shizhi Qian

Biological Sciences Faculty Publications

Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier-Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian-Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of …


Electronic And Structural Properties Of Molybdenum Thin Films As Determined By Real Time Spectroscopic Ellipsometry, J. D. Walker, H. Khatri, V. Ranjan, Jian Li, R. W. Collins, S. Marsillac Jan 2009

Electronic And Structural Properties Of Molybdenum Thin Films As Determined By Real Time Spectroscopic Ellipsometry, J. D. Walker, H. Khatri, V. Ranjan, Jian Li, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Walker, J.D., Khatri, H., Ranjan, V., Li, J., Collins, R.W., & Marsillac, S. (2009). Electronic and structural properties of molybdenum thin films as determined by real-time spectroscopic ellipsometry. Applied Physics Letters, 94(14). doi: 10.1063/1.3117222


Precise Measurement Of The Neutron Magnetic Form Factor Gnm In The Few-Gev² Region, Clas Collaboration, J. Lachniet, H. Bagdasaryan, S. Bültmann, N. Kalantarians, G. E. Dodge, T. A. Forest, G. Gavalian, C. E. Hyde-Wright, A. Klien, S. E. Kuhn, M. R. Niroula, R. A. Niyazov, L. M. Qin, L. B. Weinstein, J. Zhang Jan 2009

Precise Measurement Of The Neutron Magnetic Form Factor Gnm In The Few-Gev² Region, Clas Collaboration, J. Lachniet, H. Bagdasaryan, S. Bültmann, N. Kalantarians, G. E. Dodge, T. A. Forest, G. Gavalian, C. E. Hyde-Wright, A. Klien, S. E. Kuhn, M. R. Niroula, R. A. Niyazov, L. M. Qin, L. B. Weinstein, J. Zhang

Physics Faculty Publications

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q2 = 1.0–4.8  GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian Jan 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash Jan 2009

Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a reacting fluid with multiple dissipative processes. The procedure, as in the case of a single dissipative process, yields two dissipative terms in the Navier-Stokes equation: The first is the traditional volume viscosity term, proportional to the dilatational component of the velocity; the second term is proportional to the material time derivative of the pressure gradient. Each dissipative process is assumed to be independent of the others. In a fluid comprising a single constituent with multiple relaxation processes, the relaxation times of the multiple processes are …


Superfluid Turbulence From Quantum Kelvin Wave To Classical Kolmogorov Cascades, Jeffrey Yepez, George Vahala, Linda L. Vahala, Min Soe Jan 2009

Superfluid Turbulence From Quantum Kelvin Wave To Classical Kolmogorov Cascades, Jeffrey Yepez, George Vahala, Linda L. Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

The main topological feature of a superfluid is a quantum vortex with an identifiable inner and outer radius. A novel unitary quantum lattice gas algorithm is used to simulate quantum turbulence of a Bose-Einstein condensate superfluid described by the Gross-Pitaevskii equation on grids up to 57603. For the first time, an accurate power-law scaling for the quantum Kelvin wave cascade is determined: k-3. The incompressible kinetic energy spectrum exhibits very distinct power-law spectra in 3 ranges of k space: a classical Kolmogorov k-(5/3) spectrum at scales greater than the outer radius of individual quantum vortex …


Quantum Algorithm For Bose-Einstein Condensate Quantum Fluid Dynamics: Twisting Of Filamentary Vortex Solitons Demarcated By Fast Poincare Recursion, Jeffrey Yepez, George Vahala, Linda L. Vahala Jan 2009

Quantum Algorithm For Bose-Einstein Condensate Quantum Fluid Dynamics: Twisting Of Filamentary Vortex Solitons Demarcated By Fast Poincare Recursion, Jeffrey Yepez, George Vahala, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

The dynamics of vortex solitons is studied in a BEC superfluid. A quantum lattice-gas algorithm (measurementbased quantum computation) is employed to examine the dynamical behavior vortex soliton solutions of the Gross-Pitaevskii equation (ø4 interaction nonlinear Schroedinger equation). Quantum turbulence is studied in large grid numerical simulations: Kolmogorov spectrum associated with a Richardson energy cascade occurs on large flow scales. At intermediate scales, a new k-6 power law emerges, due to vortex filamentary reconnections associated with Kelvin wave instabilities (vortex twisting) coupling to sound modes and the exchange of intermediate vortex rings. Finally, at very small spatial scales a …