Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Laser

Institution
Publication Year
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari May 2023

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


Bbt Side Mold Assy, Bill Hemphill Jun 2022

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …


Sigesn Light-Emitting Devices: From Optical To Electrical Injection, Yiyin Zhou Dec 2021

Sigesn Light-Emitting Devices: From Optical To Electrical Injection, Yiyin Zhou

Graduate Theses and Dissertations

Si photonics is a fast-developing technology that impacts many applications such as data centers, 5G, Lidar, and biological/chemical sensing. One of the merits of Si photonics is to integrate electronic and photonic components on a single chip to form a complex functional system that features compact, low-cost, high-performance, and reliability. Among all building blocks, the monolithic integration of lasers on Si encountered substantial challenges. Si and Ge, conventional epitaxial material on Si, are incompetent for light emission due to the indirect bandgap. The current solution compromises the hybrid integration of III-V lasers, which requires growing on separate smaller size substrates …


Machine Learning Analysis To Characterize Phase Variations In Laser Propagation Through Deep Turbulence, Luis Fernando Rodriguez Sanchez Jan 2020

Machine Learning Analysis To Characterize Phase Variations In Laser Propagation Through Deep Turbulence, Luis Fernando Rodriguez Sanchez

Open Access Theses & Dissertations

The present Dissertation is focused on the analysis of the atmospheric conditions of a turbulent environmental system and its effects on the diffraction of a laser beam that moves through it. The study is based on the optical communication of two labs placed at the summit of two mountains located in Maui, Hawaii. The emitter system is located at the Mauna Loa mountain and the receiver at the Haleakala. The distance between both mountains is 150 km. The emitter system is at a height of 3.1 km and the receiver at 3.4 km. The maritime environment at the location experiences …


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista May 2019

Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista

Electrical Engineering Undergraduate Honors Theses

A THz photoconductive antenna consists of antenna pads laid over a photoconductive substrate. These types of antennas are excited through the application of an optical pump (laser), which generates carriers inside the semiconductor. The acceleration and recombination of these carriers produce photocurrent that excites the antenna and generates THz pulse. This thesis focuses on analyzing the optical response of a photoconductive antenna, which consist of the interaction of the incident electric field of a laser pump with the radiating device. It develops the amplitude modulation process of a plane wave of light into a laser pump. It also takes into …


Modeling And Computer Simulation Of Numerical Experiments On Laser Propagation Through Atmospheric Turbulence, Chunyi Chen, Huamin Yang, Bin Ren, Zhengang Jiang Jun 2018

Modeling And Computer Simulation Of Numerical Experiments On Laser Propagation Through Atmospheric Turbulence, Chunyi Chen, Huamin Yang, Bin Ren, Zhengang Jiang

Journal of System Simulation

Abstract: Focusing on numerical simulations of laser propagation in atmospheric turbulence, a method for determining the grid size of optical-field samples that need to be stored in a data file was first suggested, and a simulation scheme based on a parallel computer cluster was proposed. By performing simulation examples, both the average intensity of collimated fundamental Gaussian beams propagating through atmospheric turbulence and the change in spatial-mode composition of Laguerre-Gaussian (LG) beams travelling in atmospheric turbulence were studied. Analyses show that for the case of horizontal propagation, the use of a matching approach based on zero-order moment to determine …


Investigation On Laser Induced Deposition Of Cu-Based Materials At [Bmim]Bf4/Pt Electrode Interface, Min-Min Xu, Jin-Hua Mei, Jian-Lin Yao, Ren-Ao Gu Dec 2016

Investigation On Laser Induced Deposition Of Cu-Based Materials At [Bmim]Bf4/Pt Electrode Interface, Min-Min Xu, Jin-Hua Mei, Jian-Lin Yao, Ren-Ao Gu

Journal of Electrochemistry

By controlling the negative potential, Cu-based materials were deposited at the [BMIm]BF4/Pt electrode interface under the laser irradiation. The effects of laser power and irradiation time on the yield of deposition products were studied by using different laser powers and different irradiation time. The product yield could be directly determined by the size of deposition point through the observation from the optical microscope. Further mechanism study combined with the formula deduced that the thermal effect of the laser could make the electrode surface temperature rise 110 degrees, which can promote the occurrence of electrodeposition. By SEM characterization, the …


Increasing The Sensitivity Of The Michelson Interferometer Through Multiple Reflection, Woonghee Youn Aug 2015

Increasing The Sensitivity Of The Michelson Interferometer Through Multiple Reflection, Woonghee Youn

Graduate Theses - Physics and Optical Engineering

Michelson interferometry has been one of the most famous and popular optical interference system for analyzing optical components and measuring optical metrology properties. Typical Michelson interferometer can measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and devices size reduce to micro and nano dimension, Michelson interferometer sensitivity is not suitable. The purpose of this study is to design and develop the Michelson interferometer using the concept of multiple reflections. This thesis proposes a new and novel design for a multiple reflection interferometer, where the number of reflections does not affect the quality …


Design And Implementation Of Ir And Laser-Based Electronic Ciphering Systems, Feyzi̇ Akar, Osman Aşkin Jan 2015

Design And Implementation Of Ir And Laser-Based Electronic Ciphering Systems, Feyzi̇ Akar, Osman Aşkin

Turkish Journal of Electrical Engineering and Computer Sciences

This paper describes the design and implementation of infrared (IR) and laser-based electronic ciphering systems for use in both indoor and outdoor wireless remote control applications. To communicate between a user and a lock module in a secure way, the proposed systems utilize IR and laser frequencies instead of radio frequencies. Each proposed system has its specific security design. A new communication protocol is also generated, which is compatible for use with IR and laser technologies. The proposed electronic ciphering systems' prototypes are realized together with software and hardware components. They are instrumented using the peripheral interface controller series microcontrollers. …


Semiconductor Laser Beam Bending, Remzi̇ Yildirim, Fati̇h Vehbi̇ Çelebi̇ Jan 2015

Semiconductor Laser Beam Bending, Remzi̇ Yildirim, Fati̇h Vehbi̇ Çelebi̇

Turkish Journal of Electrical Engineering and Computer Sciences

This study is about a single-component cylindrical structured lens with a gradient curve that was used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independently of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single-piece cylindrical lens that can bend laser beams was developed. Lenses are made of transparent, tinted, or colored glass and are used to undermine or absorb the energy of laser beams. This study is not a work of a plasma filamentation, nor is related to a self-accelerating wave packet. Rather, it focuses on bending the laser …


Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick Jan 2014

Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick

Dissertations, Master's Theses and Master's Reports - Open

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI …


Properties Of High Energy Laser Light Transmission Through Large Core Optical Cables, Christopher Kennedy Jan 2013

Properties Of High Energy Laser Light Transmission Through Large Core Optical Cables, Christopher Kennedy

Electronic Theses and Dissertations

Laser induced damage is of interest in studying the transmission of large amounts of optical energy through step-index, large core multimode fibers. Optical fibers often have to be routed around objects when laser light is being transmitted between two locations which require the fiber to bend into a curve. Depending on how tight the bend is, this can result in transmission losses or even catastrophic damage when the energy density of the laser pulse exceeds the damage threshold of silica glass. The purpose of this study is to: Establish a minimum bend radius that would allow high energy (GW/cm2 ) …


'Laser Chemistry' Synthesis, Physicochemical Properties, And Chemical Processing Of Nanostructured Carbon Foams, Andres Seral-Ascaso, Rosa Garriga, Maria Luisa Sanjuan, Joselito M. Razal, Ruth Lahoz, Mariano Laguna, German F. De La Fuente, Edgar Munoz Jan 2013

'Laser Chemistry' Synthesis, Physicochemical Properties, And Chemical Processing Of Nanostructured Carbon Foams, Andres Seral-Ascaso, Rosa Garriga, Maria Luisa Sanjuan, Joselito M. Razal, Ruth Lahoz, Mariano Laguna, German F. De La Fuente, Edgar Munoz

Australian Institute for Innovative Materials - Papers

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density …


Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett Aug 2012

Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The Linac Coherent Light Source (LCLS) at SLAC depends on a photocathode electron gun to provide the linear accelerator with the raw material – electrons – used for making X-ray laser pulses. The photocathode used in the LCLS Injector is a clean copper plate in high vacuum. When the cathode is struck with high energy UV light, electrons are liberated from its surface and then accelerated down the linac with radio-frequency electric fields. These fast-moving bunches of electrons are directed through an undulator magnet to radiate X-ray light.

Although scientists have been using photocathode techniques at SLAC for 25 years, …


Fabrication And Magneto-Transport Properties Of P-Type Bi0.5sb1.5te3 Thin Films On Glass By Pulsed Laser Deposition, Zhenwei Yu, Xiaolin Wang, Yi Du, Chao Zhang Jan 2012

Fabrication And Magneto-Transport Properties Of P-Type Bi0.5sb1.5te3 Thin Films On Glass By Pulsed Laser Deposition, Zhenwei Yu, Xiaolin Wang, Yi Du, Chao Zhang

Australian Institute for Innovative Materials - Papers

Bi0.5Sb1. 5Te3 thin films were deposited on glass substrates by pulsed laser deposition (PLD) method at room temperature. Annealing effect on properties of the films was studied by structural, morphology and physical characterizations. It was found that the as-grown amorphous film crystallizes at annealing temperature of 473 K. A semiconductor-metal transition was observed in annealed films. A linear magnetoresistance (MR) was investigated in the annealed films in a magnetic field up to 13 T without saturation at low temperature.


Assessing Laser Lifetime Test Performance, Joe Weichman, Hamid Hemmati, Malcolm Wright Aug 2011

Assessing Laser Lifetime Test Performance, Joe Weichman, Hamid Hemmati, Malcolm Wright

STAR Program Research Presentations

Assessing expected component lifetime is necessary in developing instruments for future space-flight projects to ensure long term operation in the challenging environment. Although semiconductor diode lasers have widespread use in terrestrial applications, their use in space is still an emerging technology that requires on-going testing to demonstrate their capability. The project called for re-establishing the test setup for assessing lifetime performance of 20 continuously running 200mW 830 nm diode lasers. These lasers underwent previous testing based on parameters for NuSTAR’s laser metrology system, and met the six month lifetime project requirements under nominal operating conditions. Laser testing is currently underway …


Simultaneous Higher Harmonic Detection And Extraction Of Information From Oxygen Spectra, Karan Dineshchandra Mohan Jul 2010

Simultaneous Higher Harmonic Detection And Extraction Of Information From Oxygen Spectra, Karan Dineshchandra Mohan

Electrical & Computer Engineering Theses & Dissertations

Wavelength Modulation Spectroscopy (WMS) is a highly sensitive technique that utilizes synchronous detection at the N-th harmonics of a modulating frequency, by modulating the laser beam used to probe a gaseous species. The advantage of this technique lies in the greater effective signal-to-noise ratio one obtains as a direct consequence of the larger amount of structure present in the higher harmonics, and thus a greater amount of information that can be obtained from that structure. We present the development of a novel technique where data at multiple harmonics is obtained simultaneously, rather than sequentially. This removes the susceptibility of the …


The Development Of Scalable Pump Techniques For Gg Iag Fiber Lasers And Passive Athermalization Techniques For Solid State Laser, William Hageman Jan 2010

The Development Of Scalable Pump Techniques For Gg Iag Fiber Lasers And Passive Athermalization Techniques For Solid State Laser, William Hageman

Electronic Theses and Dissertations

This dissertation consists of two parts: research pertaining to the development of scalable pump techniques for gain guided index-antiguided fiber lasers and research relating to the development of passive athermalization schemes for solid state lasers. The first section primarily details the development of a side pump scheme that allows for power scaling of gain-guided index anti-guided fibers. While these fibers have been demonstrated in past research, none have used a pump technology capable of pumping with the efficiencies, uniformity, and necessary length to allow for scaling of the fiber lasers to high output powers. The side pumped scheme developed in …


Power Scaling Of Large Mode Area Thulium Fiber Lasers In Various Spectral And Temporal Regimes, Timothy Mccomb Jan 2009

Power Scaling Of Large Mode Area Thulium Fiber Lasers In Various Spectral And Temporal Regimes, Timothy Mccomb

Electronic Theses and Dissertations

High power thulium fiber lasers are interesting for a myriad of applications due to their potential for high average output power, excellent beam quality, compactness, portability, high operating efficiency and broad, eye-safe spectral range from 1.8-2.1 microns. Currently, the majority of thulium laser research effort is being invested into scaling average output powers; however, such output powers are being scaled with no degree of control on laser system output spectrum or temporal behavior. Thulium fiber laser technology is not useful for many of its most important applications without implementation of techniques enabling tunable, narrow spectral widths with appropriate pulse durations …


Design And Fabrication Of Space Variant Micro Optical Elements, Pradeep Srinivasan Jan 2009

Design And Fabrication Of Space Variant Micro Optical Elements, Pradeep Srinivasan

Electronic Theses and Dissertations

A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. …


In Situ Measurement Of Three-Dimensional Ion Densities In Focused Femtosecond Pulses, James Strohaber, Cornelis J. Uiterwaal Jan 2008

In Situ Measurement Of Three-Dimensional Ion Densities In Focused Femtosecond Pulses, James Strohaber, Cornelis J. Uiterwaal

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

We image spatial distribution of xenon ions in the focus of a laser beam of ultrashort, intense pulses in all three dimensions, with a resolution of three by twelve microns in the two transverse directions. This allows for studying ionization processes without spatially averaging ion yields. Our in situ ion imaging is also useful to analyze focal intensity profiles and to investigate the transverse modal purity of tightly focused beams of complex light. As an example, the intensity profile of a Hermite-Gaussian beam mode HG recorded with ions is found to be in good agreement with optical images.


The Effects Of Electrode Geometry On Current Pulse Caused By Electrical Discharge Over An Ultra-Fast Laser Filament, Matthew Bubelnik Jan 2005

The Effects Of Electrode Geometry On Current Pulse Caused By Electrical Discharge Over An Ultra-Fast Laser Filament, Matthew Bubelnik

Electronic Theses and Dissertations

The time-resolved electrical conductivity of a short-pulse generated plasma filament in air was studied. Close-coupled metal electrodes were used to discharge the stored energy of a high-voltage capacitor and the resulting microsecond-scale electrical discharge was measured using fast current sensors. Significant differences in the time dependence of the current were seen with the two electrode geometries used. Using sharp-tipped electrodes additional peaks in the time-resolved conductivity were seen, relative to the single peak seen with spherical electrodes. We attribute these additional features to secondary electron collisional ionization brought about by field enhancement at the tips. Additional discrepancies in the currents …


Off-Axis Mgb2 Films Using An In Situ Annealing Pulsed Laser Deposition Method, Yue Zhao, Mihail Ionescu, Josip Horvat, S X. Dou Jan 2005

Off-Axis Mgb2 Films Using An In Situ Annealing Pulsed Laser Deposition Method, Yue Zhao, Mihail Ionescu, Josip Horvat, S X. Dou

Australian Institute for Innovative Materials - Papers

Highly smooth and c-axis oriented superconducting MgB2 thin films were prepared by pulsed laser deposition (PLD) with off-axis geometry. The films were deposited on Al2O3–C substrates perpendicularly aligned to a stoichiometric MgB2 target in a 120 mTorr high purity Ar background gas. An in situ annealing was carried out at 650 °C for 1 min in a 760 Torr Ar atmosphere. Despite the short annealing time, an x-ray θ–2θ scan shows fairly good crystallization, according to the clear c-axis oriented peaks for the films. Both atomic force microscopy and the x-ray diffraction …


Towards Direct Writing Of 3-D Photonic Circuits Using Ultrafast Lasers, Arnaud Zoubir Jan 2004

Towards Direct Writing Of 3-D Photonic Circuits Using Ultrafast Lasers, Arnaud Zoubir

Electronic Theses and Dissertations

The advent of ultrafast lasers has enabled micromachining schemes that cannot be achieved by other current techniques. Laser direct writing has emerged as one of the possible routes for fabrication of optical waveguides in transparent materials. In this thesis, the advantages and limitations of this technique are explored. Two extended-cavity ultrafast lasers were built and characterized as the laser sources for this study, with improved performance over existing systems. Waveguides are fabricated in oxide glass, chalcogenide glass, and polymers, these being the three major classes of materials for the telecommunication industry. Standard waveguide metrology is performed on the fabricated waveguides, …