Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Lyapunov-Based Economic Model Predictive Control For Detecting And Handling Actuator And Simultaneous Sensor/Actuator Cyberattacks On Process Control Systems, Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan, Helen Durand Apr 2022

Lyapunov-Based Economic Model Predictive Control For Detecting And Handling Actuator And Simultaneous Sensor/Actuator Cyberattacks On Process Control Systems, Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied …


Simulation For Cybersecurity: State Of The Art And Future Directions, Hamdi Kavak, Jose J. Padilla, Daniele Vernon-Bido, Saikou Y. Diallo, Ross Gore, Sachin Shetty Jan 2021

Simulation For Cybersecurity: State Of The Art And Future Directions, Hamdi Kavak, Jose J. Padilla, Daniele Vernon-Bido, Saikou Y. Diallo, Ross Gore, Sachin Shetty

VMASC Publications

In this article, we provide an introduction to simulation for cybersecurity and focus on three themes: (1) an overview of the cybersecurity domain; (2) a summary of notable simulation research efforts for cybersecurity; and (3) a proposed way forward on how simulations could broaden cybersecurity efforts. The overview of cybersecurity provides readers with a foundational perspective of cybersecurity in the light of targets, threats, and preventive measures. The simulation research section details the current role that simulation plays in cybersecurity, which mainly falls on representative environment building; test, evaluate, and explore; training and exercises; risk analysis and assessment; and humans …


A Framework To Support Automatic Certification For Self-Adaptive Systems, Ioannis Nearchou Aug 2020

A Framework To Support Automatic Certification For Self-Adaptive Systems, Ioannis Nearchou

Masters Theses

Presently, cyber-physical systems are increasingly being integrated into societies, from the economic sector to the nuclear energy sector. Cyber-physical systems are systems that combine physical, digital, human, and other components, which operate through physical means and software. When system errors occur, the consequences of malfunction could negatively impact human life. Academic studies have relied on the MAPE-K feedback loop model to develop various system components to satisfy the self-adaptive features, such that violation of the safety requirements can be minimized. Assurance of system requirement satisfaction is argued through an industrial standard form, called an assurance case, which is usually applied …


Automatically `Verifying’ Discrete-Time Complex Systems Through Learning, Abstraction And Refinement, Jingyi Wang, Jun Sun, Shengchao Qin, Cyrille Jegourel Dec 2018

Automatically `Verifying’ Discrete-Time Complex Systems Through Learning, Abstraction And Refinement, Jingyi Wang, Jun Sun, Shengchao Qin, Cyrille Jegourel

Research Collection School Of Computing and Information Systems

Precisely modeling complex systems like cyber-physical systems is challenging, which often render model-based system verification techniques like model checking infeasible. To overcome this challenge, we propose a method called LAR to automatically ‘verify’ such complex systems through a combination of learning, abstraction and refinement from a set of system log traces. We assume that log traces and sampling frequency are adequate to capture ‘enough’ behaviour of the system. Given a safety property and the concrete system log traces as input, LAR automatically learns and refines system models, and produces two kinds of outputs. One is a counterexample with a bounded …