Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis Aug 2013

Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis

Graduate Theses and Dissertations

Advancements in integrated nanoelectronics will continue to require the use of unique materials or systems of materials with diverse functionalities in increasingly confined spaces.

Hence, research on finite-dimensional systems strive to unearth and expand the knowledge of fundamental physical properties in certain key materials which exhibit numerous concurrent and exploitable functions.

Correspondingly, ferroelectric nanostructures, which particularly display a plethora of complex phenomena, prevalent in countless fields of research, are noteworthy candidates. Presently, however, the assimilation of zero-(0D) and one-dimensional (1D) ferroelectric into micro- or nano-electronics has been lagging, in part due to a lack of applied and fundamental studies but …


Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari Mar 2013

Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites and pure TiO2 were successfully used to know the effect of Au on TiO2 and their comparative optical, visible light catalytic andelectrochemical activities were investigated. Optical parameters such as band gap energy (Eg = 2.4 eV), absorption coefficient (a), refractive index (n) and dielectric constants (s) have been determined using different methods. Visible light (590 nm) catalytic activity of Au@TiO2 nanocomposites was performed for reducing methyl orange (MO) under visible light irradiation. CV, EIS and DPV studies demonstrate that Au@TiO2 nanocomposites exhibit redox behavior, charged its surface by accumulating electrons, store and release the electrons.


Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites With Modified Morphology And Thermal Properties, Nasir Mahmood, Mohammad Islam, Asad Hameed, Shaukat Saeed Jan 2013

Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites With Modified Morphology And Thermal Properties, Nasir Mahmood, Mohammad Islam, Asad Hameed, Shaukat Saeed

Australian Institute for Innovative Materials - Papers

Pure polyamide 6 (PA6) and polyamide 6/carbon nanotube (PA6/CNT) composite samples with 0.5 weight percent loading of pristine or functionalized CNTs were made using a solution mixing technique. Modification of nanotube surface as a result of chemical functionalization was confirmed through the presence of lattice defects as examined under high-resolution transmission electron microscope and absorption bands characteristic of carboxylic, sulfonic and amine chemical groups. Microstructural examination of the cryogenically fractured surfaces revealed qualitative information regarding CNT dispersion within PA6 matrix and interfacial strength. X-ray diffraction studies indicated formation of thermodynamically more stable α-phase crystals. Thermogravimetric analysis revealed that CNT incorporation …


Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

From energy and environmental consideration, an industrial waste product, coal tar pitch (CTP), is used as the carbon source for Si/AC composite. We exploited a facile sintering method to largely scale up Si/amorphous carbon nanocomposite. The composites with 20 wt.% silicon with PVdF binder exhibited stable lithium storage ability for prolonged cycling. The composite anode delivered a capacity of 400.3 mAh g−1 with a high capacity retention of 71.3% after 1000 cycles. Various methods are used to investigate the reason for the outstanding cyclability. The results indicate that the silicon nanoparticles are wrapped by amorphous SiOx and AC in Si/AC …