Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 98

Full-Text Articles in Engineering

Domain Specific Computing In Tightly-Coupled Heterogeneous Systems, Anthony Michael Cabrera Aug 2020

Domain Specific Computing In Tightly-Coupled Heterogeneous Systems, Anthony Michael Cabrera

McKelvey School of Engineering Theses & Dissertations

Over the past several decades, researchers and programmers across many disciplines have relied on Moores law and Dennard scaling for increases in compute capability in modern processors. However, recent data suggest that the number of transistors per square inch on integrated circuits is losing pace with Moores laws projection due to the breakdown of Dennard scaling at smaller semiconductor process nodes. This has signaled the beginning of a new “golden age in computer architecture” in which the paradigm will be shifted from improving traditional processor performance for general tasks to architecting hardware that executes a class of applications in a …


Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding Aug 2020

Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding

McKelvey School of Engineering Theses & Dissertations

Single-molecule (SM) fluorescence and its localization are important and versatile tools for understanding and quantifying dynamical nanoscale behavior of nanoparticles and biological systems. By actively controlling the concentration of fluorescent molecules and precisely localizing individual single molecules, it is possible to overcome the classical diffraction limit and achieve 'super-resolution' with image resolution on the order of 10 nanometers.

Single molecules also can be considered as nanoscale sensors since their fluorescence changes in response to their local nanoenvironment. This dissertation discusses extending this SM approach to resolve heterogeneity and dynamics of nanoscale materials and biophysical structures by using positions and orientations …


Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi Aug 2020

Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi

McKelvey School of Engineering Theses & Dissertations

Single-molecule localization microscopy (SMLM) techniques have become advanced bioanalytical tools by quantifying the positions and orientations of molecules in space and time at the nanoscale. With the noisy and heterogeneous nature of SMLM datasets in mind, we discuss leveraging particle-gradient flow 1) for quantifying the accuracy of localization algorithms with and without ground truth and 2) as a basis for novel, model-driven localization algorithms with empirically robust performance. Using experimental data, we demonstrate that overlapping images of molecules, a typical consequence of densely packed biological structures, cause biases in position estimates and reconstruction artifacts. To minimize such biases, we develop …


Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner Aug 2020

Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner

McKelvey School of Engineering Theses & Dissertations

Nonequilibrium plasma (NEP) is an extraordinary environment for material synthesis. NEP is comprised of hot electrons with temperatures greater than 10000 K and of cold ions and neutrals that are usually at few hundred kelvins above room temperature. Due to this large difference in species’ temperatures, the assumption of local thermal equilibrium does not hold in NEP. Therefore, NEP can act as a unique processor of mass, and it can transform materials along pathways that are not accessible by methods wherein local thermal equilibrium is valid. For decades, NEPs have been employed in the semiconductor industry to manufacture many thin …


Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris Aug 2020

Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris

McKelvey School of Engineering Theses & Dissertations

The fundamental operation of matrix multiplication is ubiquitous across a myriad of disciplines. Yet, the identification of new optimizations for matrix multiplication remains relevant for emerging hardware architectures and heterogeneous systems. Frameworks such as OpenCL enable computation orchestration on existing systems, and its availability using the Intel High Level Synthesis compiler allows users to architect new designs for reconfigurable hardware using C/C++. Using the HARPv2 as a vehicle for exploration, we investigate the utility of several of the most notable matrix multiplication optimizations to better understand the performance portability of OpenCL and the implications for such optimizations on this and …


Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily May 2020

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily

McKelvey School of Engineering Theses & Dissertations

Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts. In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on …


Exploring Usage Of Web Resources Through A Model Of Api Learning, Finn Voichick May 2020

Exploring Usage Of Web Resources Through A Model Of Api Learning, Finn Voichick

McKelvey School of Engineering Theses & Dissertations

Application programming interfaces (APIs) are essential to modern software development, and new APIs are frequently being produced. Consequently, software developers must regularly learn new APIs, which they typically do on the job from online resources rather than in a formal educational context. The Kelleher–Ichinco COIL model, an acronym for “Collection and Organization of Information for Learning,” was recently developed to model the entire API learning process, drawing from information foraging theory, cognitive load theory, and external memory research. We ran an exploratory empirical user study in which participants performed a programming task using the React API with the goal of …


First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman May 2020

First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman

McKelvey School of Engineering Theses & Dissertations

Ceramic materials display a wide variety of valuable properties, such as ferroelectricity, superconductivity, and magnetic ordering, due to the partially covalent bonds which connect the cations and anions. While many breakthroughs have been made by mixing multiple cations on a sublattice, the equivalent mixed-anion ceramics have not received nearly as much attention, despite the key role the anion plays in the materials’ properties. There is great potential for functional ceramics design using anion engineering, which aims to tune the materials properties by adding and removing different types of anions in existing classes of ceramic materials. In this dissertation, I present …


Development Of Novel Instrumentation And Methods To Investigate The Composition And Phase Partitioning Of Semivolatile And Intermediately Volatile Organic Compounds In Atmospheric Organic Aerosol, Claire Fortenberry May 2020

Development Of Novel Instrumentation And Methods To Investigate The Composition And Phase Partitioning Of Semivolatile And Intermediately Volatile Organic Compounds In Atmospheric Organic Aerosol, Claire Fortenberry

McKelvey School of Engineering Theses & Dissertations

Atmospheric particulate matter (PM) is ubiquitous in both indoor and outdoor air and is generally detrimental to human health. PM composed of particles with aerodynamic diameters less than 2.5 um (PM2.5) are related to adverse health outcomes including heart disease and respiratory disease. Fundamentally, particle physical properties such as size and hygroscopicity are dictated by chemical composition, which can be highly complex, particularly for organic aerosol (OA). In both outdoor and indoor air, OA is composed substantially of intermediately volatile and semivolatile organic compounds (I/SVOCs), which exist in both gas and particle phases under typical atmospheric conditions. The distribution of …


Chemistry Of Nanoscale Solids And Organic Matter In Sustainable Water Management Systems, Xuanhao Wu May 2020

Chemistry Of Nanoscale Solids And Organic Matter In Sustainable Water Management Systems, Xuanhao Wu

McKelvey School of Engineering Theses & Dissertations

To alleviate global water scarcity and improve public health, engineered water treatment and management systems have been developed for purifying contaminated water and desalinating brackish or ocean water. These engineered systems provide substantial amounts of potable water and lessen environmental concerns about the release of contaminated water. Wastewater treatment plants (WWTPs), water desalination plants (WDPs), and managed aquifer recharge systems (MARs) are three representative sustainable water management (SWM) systems. But the operation of all three poses two fundamental questions: (1) What is the fate of nanoscale solids (e.g., engineered nanomaterials, naturally occurring nanoparticles) in SWM systems and how will their …


Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim May 2020

Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim

McKelvey School of Engineering Theses & Dissertations

Electronic Health Records (EHR) are widely adopted and used throughout healthcare systems and are able to collect and store longitudinal information data that can be used to describe patient phenotypes. From the underlying data structures used in the EHR, discrete data can be extracted and analyzed to improve patient care and outcomes via tasks such as risk stratification and prospective disease management. Temporality in EHR is innately present given the nature of these data, however, and traditional classification models are limited in this context by the cross-sectional nature of training and prediction processes. Finding temporal patterns in EHR is especially …


Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim May 2020

Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim

McKelvey School of Engineering Theses & Dissertations

Electronic Health Records (EHR) are widely adopted and used throughout healthcare systems and are able to collect and store longitudinal information data that can be used to describe patient phenotypes. From the underlying data structures used in the EHR, discrete data can be extracted and analyzed to improve patient care and outcomes via tasks such as risk stratification and prospective disease management. Temporality in EHR is innately present given the nature of these data, however, and traditional classification models are limited in this context by the cross- sectional nature of training and prediction processes. Finding temporal patterns in EHR is …


Contemporary Problems In Aerosol Aggregation And Gelation, Pai Liu Dec 2019

Contemporary Problems In Aerosol Aggregation And Gelation, Pai Liu

McKelvey School of Engineering Theses & Dissertations

Aggregation of nanoparticles in aerosols is a fundamental phenomenon with important implications to diverse fields ranging from material synthesis to pollutant control. The past few decades have witnessed extensive research on investigating the structure and growth mechanism of aerosol aggregates with sizes spanning across several orders of magnitude. This dissertation focuses on some contemporary problems that remain unaddressed in this topical area. Aerosol aggregates in sub-micron regimes, which are formed via the irreversible collision and aggregation of solid nanoparticle monomers, are fractal-like in their morphology. A mathematical description of this seemingly random structure dates to the seminal works by Forest …


Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He Dec 2019

Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) is a novel imaging modality that combines the fine lateral resolution from optical imaging and the deep penetration from ultrasonic imaging, and provides rich optical-absorption–based images. PAT has been widely used in extracting structural and functional information from both ex vivo tissue samples to in vivo animals and humans with different length scales by imaging various endogenous and exogenous contrasts at the ultraviolet to infrared spectrum. For example, hemoglobin in red blood cells is of particular interest in PAT since it is one of the dominant absorbers in tissue at the visible wavelength.The main focus of …


The Role Of Multi-Charged Responses: Construction And Application Of A Tandem Differential Mobility Analyzer (Tdma), Christopher Ray Oxford Dec 2019

The Role Of Multi-Charged Responses: Construction And Application Of A Tandem Differential Mobility Analyzer (Tdma), Christopher Ray Oxford

McKelvey School of Engineering Theses & Dissertations

Atmospheric aerosols impact health outcomes, visibility, and the energy balance of the earth. The atmosphere contains a variety of compounds, and the volatility (phase change enthalpy and vapor pressure) of each compound determines its partitioning between the gas phase and the particle phase. The hygroscopicity (an aerosol’s affinity for water) of an atmospheric aerosol particle is determined by the many compounds present in the particle, and thus, the volatility impacts hygroscopicity. Changes in hygroscopicity alter the fraction of the aerosol deposited in the lungs and the fraction of the aerosol activated into cloud droplets. Thus, understanding the volatility and hygroscopicity …


Systemic Risk In Financial Networks, Tathagata Banerjee Aug 2019

Systemic Risk In Financial Networks, Tathagata Banerjee

McKelvey School of Engineering Theses & Dissertations

In this dissertation, I have used the network model based approach to study systemic risk in financial networks. In particular, I have worked on generalized extensions of the Eisenberg--Noe [2001] framework to account for realistic financial situations viz. pricing of corporate debt while accounting for network effects, asset liquidation mechanisms during fire sales, dynamic clearing and impact of contingent payments such as insurance and credit default swaps. First, I present formulas for the valuation of debt and equity of firms in a financial network under comonotonic endowments. I demonstrate that the comonotonic setting provides a lower bound to the price …


Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich Aug 2019

Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich

McKelvey School of Engineering Theses & Dissertations

Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. In this research work, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. We investigate polarization division multiplexing based optical communication systems in five distinct parts. In the first part of the work, we define a simulation model of two or more linearly polarized optical signals (at different polarization angles) that are transmitted through a common medium (e.g., air), filtered …


Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin Aug 2019

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin

McKelvey School of Engineering Theses & Dissertations

Concerns over the impact of climate change caused by CO2 emission have driven the research and development of renewable energies. Microbial production of chemicals is being viewed as a feasible approach to reduce the use of fossil fuels and minimize the impact of climate change. With recent advances in synthetic biology, microorganisms can be engineered to synthesize petroleum-based chemicals and plant-derived compounds. Cyanobacteria are photosynthetic prokaryotes that use only sunlight, CO2, and trace minerals for growth. Compared to other microbial hosts, cyanobacteria are attractive platforms for sustainable bioproduction, because they can directly convert CO2 into products. However, the major challenge …


Decoupling Information And Connectivity Via Information-Centric Transport, Hila Ben Abraham Aug 2019

Decoupling Information And Connectivity Via Information-Centric Transport, Hila Ben Abraham

McKelvey School of Engineering Theses & Dissertations

The power of Information-Centric Networking architectures (ICNs) lies in their abstraction for communication --- the request for named data. This abstraction was popularized by the HyperText Transfer Protocol (HTTP) as an application-layer abstraction, and was extended by ICNs to also serve as their network-layer abstraction. In recent years, network mechanisms for ICNs, such as scalable name-based forwarding, named-data routing and in-network caching, have been widely explored and researched. However, to the best of our knowledge, the impact of this network abstraction on ICN applications has not been explored or well understood. The motivation of this dissertation is to address this …


Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin Aug 2019

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin

McKelvey School of Engineering Theses & Dissertations

Concerns over the impact of climate change caused by CO2 emission have driven the research and development of renewable energies. Microbial production of chemicals is being viewed as a feasible approach to reduce the use of fossil fuels and minimize the impact of climate change. With recent advances in synthetic biology, microorganisms can be engineered to synthesize petroleum-based chemicals and plant-derived compounds. Cyanobacteria are photosynthetic prokaryotes that use only sunlight, CO2, and trace minerals for growth. Compared to other microbial hosts, cyanobacteria are attractive platforms for sustainable bioproduction, because they can directly convert CO2 into products. However, the major challenge …


Sufficient Conditions For Optimal Control Problems With Terminal Constraints And Free Terminal Times With Applications To Aerospace, Sankalp Kishan Bhan May 2019

Sufficient Conditions For Optimal Control Problems With Terminal Constraints And Free Terminal Times With Applications To Aerospace, Sankalp Kishan Bhan

McKelvey School of Engineering Theses & Dissertations

Motivated by the flight control problem of designing control laws for a Ground Collision Avoidance System (GCAS), this thesis formulates sufficient conditions for a strong local minimum for a terminally constrained optimal control problem with a free-terminal time. The conditions develop within the framework of a construction of a field of extremals by means of the method of characteristics, a procedure for the solution of first-order linear partial differential equations, but modified to apply to the Hamilton-Jacobi-Bellman equation of optimal control. Additionally, the thesis constructs these sufficient conditions for optimality with a mathematically rigorous development. The proof uses an approach …


Toward Controllable And Robust Surface Reconstruction From Spatial Curves, Zhiyang Huang May 2019

Toward Controllable And Robust Surface Reconstruction From Spatial Curves, Zhiyang Huang

McKelvey School of Engineering Theses & Dissertations

Reconstructing surface from a set of spatial curves is a fundamental problem in computer graphics and computational geometry. It often arises in many applications across various disciplines, such as industrial prototyping, artistic design and biomedical imaging. While the problem has been widely studied for years, challenges remain for handling different type of curve inputs while satisfying various constraints. We study studied three related computational tasks in this thesis. First, we propose an algorithm for reconstructing multi-labeled material interfaces from cross-sectional curves that allows for explicit topology control. Second, we addressed the consistency restoration, a critical but overlooked problem in applying …


Management And Security Of Multi-Cloud Applications, Lav Gupta May 2019

Management And Security Of Multi-Cloud Applications, Lav Gupta

McKelvey School of Engineering Theses & Dissertations

Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers' virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the …


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

McKelvey School of Engineering Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions …


Real-Time Reliable Middleware For Industrial Internet-Of-Things, Chao Wang May 2019

Real-Time Reliable Middleware For Industrial Internet-Of-Things, Chao Wang

McKelvey School of Engineering Theses & Dissertations

This dissertation contributes to the area of adaptive real-time and fault-tolerant systems research, applied to Industrial Internet-of-Things (IIoT) systems. Heterogeneous timing and reliability requirements arising from IIoT applications have posed challenges for IIoT services to efficiently differentiate and meet such requirements. Specifically, IIoT services must both differentiate processing according to applications' timing requirements (including latency, event freshness, and relative consistency of each other) and enforce the needed levels of assurance for data delivery (even as far as ensuring zero data loss). It is nontrivial for an IIoT service to efficiently differentiate such heterogeneous IIoT timing/reliability requirements to fit each application, …


Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection, Trevor Larsen May 2019

Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection, Trevor Larsen

McKelvey School of Engineering Theses & Dissertations

Classical methods for psychometric function estimation either require excessive resources to perform, as in the method of constants, or produce only a low resolution approximation of the target psychometric function, as in adaptive staircase or up-down procedures. This thesis makes two primary contributions to the estimation of the audiogram, a clinically relevant psychometric function estimated by querying a patient’s for audibility of a collection of tones. First, it covers the implementation of a Gaussian process model for learning an audiogram using another audiogram as a prior belief to speed up the learning procedure. Second, it implements a use case of …


Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim Dec 2018

Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim

McKelvey School of Engineering Theses & Dissertations

All living organisms utilize phosphorus (P) as an essential component of their cell membranes, DNA and RNA, and adenosine triphosphate. Bones, in addition to bearing loads, play an important role in balancing P levels in our bodies. In bones, a network of collagen templates and calcium phosphate (CaP) nanocrystals builds hierarchical levels, from nano- to macroscale. Within this architecture, the thermodynamic properties of CaP minerals are influential. Despite the importance of nucleation, growth, and crystallization in collagen structures for tissue development, little kinetic study of these processes has been conducted due to the limited in situ techniques for monitoring these …


Nanopower Analog Frontends For Cyber-Physical Systems, Kenji Aono Dec 2018

Nanopower Analog Frontends For Cyber-Physical Systems, Kenji Aono

McKelvey School of Engineering Theses & Dissertations

In a world that is increasingly dominated by advances made in digital systems, this work will explore the exploiting of naturally occurring physical phenomena to pave the way towards a self-powered sensor for Cyber-Physical Systems (CPS). In general, a sensor frontend can be broken up into a handful of basic stages: transduction, filtering, energy conversion, measurement, and interfacing. One analog artifact that was investigated for filtering was the physical phenomenon of hysteresis induced in current-mode biquads driven near or at their saturation limit. Known as jump resonance, this analog construct facilitates a higher quality factor to be brought about without …


Towards Engineering Advanced Nanomaterials: Elucidating Fundamental Particle Behavior In Water And Critical Sorption Dynamics, Changwoo Kim Dec 2018

Towards Engineering Advanced Nanomaterials: Elucidating Fundamental Particle Behavior In Water And Critical Sorption Dynamics, Changwoo Kim

McKelvey School of Engineering Theses & Dissertations

As advanced nanomaterials, inorganic-organic nano composites have received great interest as potential platform (nano) structures for sensor, catalyst, sorbent, and environmental applications. Here, my Ph.D. research has focused on the design, synthesis, and characterization of advanced water-stable engineered metal-oxide nanoparticles functionalized by organic frames for environmental applications. For the environmental applications, I have evaluated particleoptimized sorption processes for the remediation and separation of arsenic, chromium, and uranium under environmentally relevant conditions. More specifically, I have explored the critical role of organic coating on sorption mechanisms and performances using engineered iron oxide -based, manganese oxide -based, and manganese ferrite -based (core) …


Kcnq1/Kcne1 Interaction In The Cardiac Iks Channel And Its Physiological Consequences, Jiajing Xu Dec 2018

Kcnq1/Kcne1 Interaction In The Cardiac Iks Channel And Its Physiological Consequences, Jiajing Xu

McKelvey School of Engineering Theses & Dissertations

Dynamic conformational changes of ion channel proteins during activation gating determine their function as carriers of current. The relationship between these molecular movements and channel function over the physiological timescale of the action potential (AP) has not been fully established due to limitations of existing techniques. We constructed a library of possible cardiac IKs protein conformations and applied a combination of protein segmentation and energy linearization to study this relationship computationally. Simulations reproduced the effects of the beta-subunit (KCNE1) on the alpha-subunit (KCNQ1) dynamics and function, observed in experiments. Mechanistically, KCNE1 increased the probability of “visiting” conducting pore conformations on …