Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Strain-Enhanced Coherent Exciton-Polaron States In 1d Phthalocyanine Crystalline Thin Films, Libin Liang Jan 2022

Strain-Enhanced Coherent Exciton-Polaron States In 1d Phthalocyanine Crystalline Thin Films, Libin Liang

Graduate College Dissertations and Theses

Organic semiconductors are at the forefront of materials research, due to their desired electric and mechanical properties. They offer the unique opportunity to modify material properties during synthesis process, opening an avenue to the development of novel flexible and wearable electronic and photonic devices.Molecular excitons are of importance in organic semiconductor properties. While majority of research studies are centered on achieving good control of amorphous or polycrystalline thin film properties, the static disorder effect leads to poor device performance when compared to inorganic semiconductors with superior crystalline ordering. On the other hand, the macroscopic molecular long-range ordering can enhance device …


Tuning Electroluminescence From Resonators Based On Fabry-Pérot Microcavity Oleds, Ekraj Dahal Jan 2022

Tuning Electroluminescence From Resonators Based On Fabry-Pérot Microcavity Oleds, Ekraj Dahal

Graduate College Dissertations and Theses

This thesis comprises a series of methods for controlling the electroluminescence from Fabry-Pérot microcavity OLEDs by varying the resonator geometry and the location of the organic emitter within the resonator. In pursuit of this thesis, I conducted three experimental projects backed by theoretical modeling. First the thickness of the microcavity was varied to observe changes in resonant state wavelength, linewidth of the states, angular dispersion, and polarization splitting. The resulting electroluminescence can be tuned to span the entire color gamut using a single green chromophore. Electroluminescence of this green chromophore was used to pump the optical states of nominally identical …


Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love Jan 2022

Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love

Graduate College Dissertations and Theses

Modern computational resource have solidified the use of computer modeling as an integral part of the engineering design process. This is particularly impressive when it comes to high-dimensional models such as computational fluid dynamics (CFD) models. CFD models are now capable of producing results with a level of confidence that would previously have required physical experimentation. Simultaneously, the development of machine learning techniques and algorithms has increased exponentially in recent years. This acceleration is also due to the widespread availability of modern computational resources. Thus far, the cross-over between these fields has been mostly focused on computer models with low …


On The Enhancement Of Penetrating Radar Target Location Accuracy With Visual-Inertial Slam, Joshua Girard Jan 2022

On The Enhancement Of Penetrating Radar Target Location Accuracy With Visual-Inertial Slam, Joshua Girard

Graduate College Dissertations and Theses

This paper presents research concerning the use of visual-inertial Simultaneous Localization And Mapping (SLAM) algorithms to aid in Continuous Wave (CW) radar target mapping. SLAM is an established field in which radarhas been used to internally contribute to the localization algorithms. Instead, the application in this case is to use SLAM outputs to localize radar data and construct three-dimensional target maps which can be viewed in augmented reality. These methods are transferable to other types of radar units and sensors, but this paper presents the research showing how the methods can be applied to calculate depth efficiently with CW radar …


Medical Applications Of Ultrasound: T-Cell Drug Delivery, Osteoporosis Diagnosis, And Biofilm Mitigation, Alina Karki Jan 2022

Medical Applications Of Ultrasound: T-Cell Drug Delivery, Osteoporosis Diagnosis, And Biofilm Mitigation, Alina Karki

Graduate College Dissertations and Theses

The ability of ultrasound to localize acoustic energy deposition and induce a biological effect within a target is examined in three novel biomedical applications: sonoporation, osteoporosis diagnosis, and biofilm mitigation.Ultrasound can excite encapsulated microbubbles, causing an acoustic cavitation effect in the vicinity of cells, temporarily increasing membrane permeability, and allowing cells to uptake foreign molecules. This non-viral transfection technique is called sonoporation. Our experimental study demonstrated that it could be effective for small interfering RNA (siRNA) delivery into an isolated mouse and human T-cells, which is a complex process despite its importance in treating numerous diseases. T-cells are non-proliferating, while …


A Holistic Approach To River Restoration Design And Conservation Planning On The Reach And Basin Scales Using Hydraulic Modeling And Multi-Objective Optimization Tools, Lindsay Courtney Worley Jan 2022

A Holistic Approach To River Restoration Design And Conservation Planning On The Reach And Basin Scales Using Hydraulic Modeling And Multi-Objective Optimization Tools, Lindsay Courtney Worley

Graduate College Dissertations and Theses

Flooding events around the world cost billions (USD) in damages each year. For decades, engineers have combated flood related damages by implementing flood mitigation controls such as channelization, levees or berms, and armoring. Recent advances in the study of river dynamics, however, have challenged the efficacy of these traditional flood mitigation techniques and pose that these structures are disconnecting channels from their floodplains, increasing flow rates, and contributing to more erosion. The effects of climate change combined with future predictions of increased storm frequency and intensity make it necessary to revise flood hazard mitigation strategies. A more nature-based alternative to …


Constraint-Aware And Efficiency-Aware Control Of Air-Path In Fuel Cell Vehicles, Eli Bacher-Chong Jan 2022

Constraint-Aware And Efficiency-Aware Control Of Air-Path In Fuel Cell Vehicles, Eli Bacher-Chong

Graduate College Dissertations and Theses

Fuel cell technology offers the potential for clean, efficient, robust energy productionfor both stationary and mobile applications. But without fast and robust control systems, fuel cells cannot hope to maintain real-life efficiencies near enough to their theoretical potential. This work studies control and constraint management techniques to regulate a nonlinear multivariable air-path system for a proton exchange membrane fuel cell (PEMFC). The control objectives are to avoid oxygen starvation, run at the maximum net efficiency, achieve fast tracking of air flow and pressure set-points, and be easy to calibrate. To operate at maximum efficiency, a set-point map is generated for …