Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 64

Full-Text Articles in Engineering

Organic Fouling Mitigation In Forward Osmosis Technology Through The Use Of Oscilatting Alternating Current Electric Fields, Logan Werner Jan 2024

Organic Fouling Mitigation In Forward Osmosis Technology Through The Use Of Oscilatting Alternating Current Electric Fields, Logan Werner

Graduate College Dissertations and Theses

Forward osmosis (FO) is the term given to osmosis in water filtration applications. FO has many advantages to conventional membrane filtration processes. The lack of external pressure needed to force solvent through the membrane is dramatically decreased in FO, resulting in a lower cost of operation compared to reverse osmosis. Lower external pressures also result in decreased fouling on the membrane surface and improved permeate flux. Fouling is one of the foremost challenges within the membrane filtration industry and is one of the biggest contributors to operating costs. While FO results in less fouling than RO, fouling remains a major …


Effective Drag Coefficient Prediction On Single-View 2d Images Of Snowflakes, Cameron Hudson Jan 2024

Effective Drag Coefficient Prediction On Single-View 2d Images Of Snowflakes, Cameron Hudson

Graduate College Dissertations and Theses

The drag coefficient of snowflakes is an crucial particle descriptor that can quantify the relationships with the mass, shape, size, and fall speed of snowflake particles. Previous studies has relied on estimating and improving empirical correlations for the drag coefficient of particles, utilizing 3D images from the Multi-Angled Snowflake Camera Database (MASCDB) to estimate snowflake properties such as mass, geometry, shape classification, and rimming degree. However, predictions of the drag coefficient with single-view 2D images of snowflakes has proven to be a challenging problem, primarily due to the lack of data and time-consuming, expensive methods used to estimate snowflake shape …


Data-Driven Reachability Of Non-Linear Systems Via Optimization Of Chen-Fliess Series, Ivan Perez Avellaneda Jan 2023

Data-Driven Reachability Of Non-Linear Systems Via Optimization Of Chen-Fliess Series, Ivan Perez Avellaneda

Graduate College Dissertations and Theses

A reachable set is the set of all possible states produced by applying a set of inputs, initial states, and parameters. The fundamental problem of reachability is checking if a set of states is reached provided a set of inputs, initial states, and parameters, typically, in a finite time. In the engineering field, reachability analysis is used to test the guarantees of the operation’s safety of a system. In the present work, the reachability analysis of nonlinear control affine systems is studied by means of the Chen-Fliess series. Different perspectives for addressing the reachability problem, such as interval arithmetic, mixed-monotonicity, …


Effects Of Morphology On Genetic Assimilation Of Learned Behavior, Natalie L. Tolley Jan 2023

Effects Of Morphology On Genetic Assimilation Of Learned Behavior, Natalie L. Tolley

Graduate College Dissertations and Theses

The Baldwin effect is an evolutionary theory regarding the assimilation of ontogenetic changes into a population's genome via selection pressure to entrench beneficial phenotypes discovered through learning. In evolutionary computation, the incorporation of learning into non-embodied agents allows them to navigate otherwise rough fitness landscapes by allowing for local exploration at particular points in that landscape. Prior work investigating the specific mechanisms by which learned behavior is genetically assimilated is almost entirely limited to non-situated, non-embodied simulations such as bitstring manipulation. However, recent research has demonstrated that genetic assimilation can be observed in embodied agents. Learning more about the ways …


On The Enhancement Of Penetrating Radar Target Location Accuracy With Visual-Inertial Slam, Joshua Girard Jan 2022

On The Enhancement Of Penetrating Radar Target Location Accuracy With Visual-Inertial Slam, Joshua Girard

Graduate College Dissertations and Theses

This paper presents research concerning the use of visual-inertial Simultaneous Localization And Mapping (SLAM) algorithms to aid in Continuous Wave (CW) radar target mapping. SLAM is an established field in which radarhas been used to internally contribute to the localization algorithms. Instead, the application in this case is to use SLAM outputs to localize radar data and construct three-dimensional target maps which can be viewed in augmented reality. These methods are transferable to other types of radar units and sensors, but this paper presents the research showing how the methods can be applied to calculate depth efficiently with CW radar …


Strain-Enhanced Coherent Exciton-Polaron States In 1d Phthalocyanine Crystalline Thin Films, Libin Liang Jan 2022

Strain-Enhanced Coherent Exciton-Polaron States In 1d Phthalocyanine Crystalline Thin Films, Libin Liang

Graduate College Dissertations and Theses

Organic semiconductors are at the forefront of materials research, due to their desired electric and mechanical properties. They offer the unique opportunity to modify material properties during synthesis process, opening an avenue to the development of novel flexible and wearable electronic and photonic devices.Molecular excitons are of importance in organic semiconductor properties. While majority of research studies are centered on achieving good control of amorphous or polycrystalline thin film properties, the static disorder effect leads to poor device performance when compared to inorganic semiconductors with superior crystalline ordering. On the other hand, the macroscopic molecular long-range ordering can enhance device …


Tuning Electroluminescence From Resonators Based On Fabry-Pérot Microcavity Oleds, Ekraj Dahal Jan 2022

Tuning Electroluminescence From Resonators Based On Fabry-Pérot Microcavity Oleds, Ekraj Dahal

Graduate College Dissertations and Theses

This thesis comprises a series of methods for controlling the electroluminescence from Fabry-Pérot microcavity OLEDs by varying the resonator geometry and the location of the organic emitter within the resonator. In pursuit of this thesis, I conducted three experimental projects backed by theoretical modeling. First the thickness of the microcavity was varied to observe changes in resonant state wavelength, linewidth of the states, angular dispersion, and polarization splitting. The resulting electroluminescence can be tuned to span the entire color gamut using a single green chromophore. Electroluminescence of this green chromophore was used to pump the optical states of nominally identical …


Constraint-Aware And Efficiency-Aware Control Of Air-Path In Fuel Cell Vehicles, Eli Bacher-Chong Jan 2022

Constraint-Aware And Efficiency-Aware Control Of Air-Path In Fuel Cell Vehicles, Eli Bacher-Chong

Graduate College Dissertations and Theses

Fuel cell technology offers the potential for clean, efficient, robust energy productionfor both stationary and mobile applications. But without fast and robust control systems, fuel cells cannot hope to maintain real-life efficiencies near enough to their theoretical potential. This work studies control and constraint management techniques to regulate a nonlinear multivariable air-path system for a proton exchange membrane fuel cell (PEMFC). The control objectives are to avoid oxygen starvation, run at the maximum net efficiency, achieve fast tracking of air flow and pressure set-points, and be easy to calibrate. To operate at maximum efficiency, a set-point map is generated for …


A Holistic Approach To River Restoration Design And Conservation Planning On The Reach And Basin Scales Using Hydraulic Modeling And Multi-Objective Optimization Tools, Lindsay Courtney Worley Jan 2022

A Holistic Approach To River Restoration Design And Conservation Planning On The Reach And Basin Scales Using Hydraulic Modeling And Multi-Objective Optimization Tools, Lindsay Courtney Worley

Graduate College Dissertations and Theses

Flooding events around the world cost billions (USD) in damages each year. For decades, engineers have combated flood related damages by implementing flood mitigation controls such as channelization, levees or berms, and armoring. Recent advances in the study of river dynamics, however, have challenged the efficacy of these traditional flood mitigation techniques and pose that these structures are disconnecting channels from their floodplains, increasing flow rates, and contributing to more erosion. The effects of climate change combined with future predictions of increased storm frequency and intensity make it necessary to revise flood hazard mitigation strategies. A more nature-based alternative to …


Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love Jan 2022

Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love

Graduate College Dissertations and Theses

Modern computational resource have solidified the use of computer modeling as an integral part of the engineering design process. This is particularly impressive when it comes to high-dimensional models such as computational fluid dynamics (CFD) models. CFD models are now capable of producing results with a level of confidence that would previously have required physical experimentation. Simultaneously, the development of machine learning techniques and algorithms has increased exponentially in recent years. This acceleration is also due to the widespread availability of modern computational resources. Thus far, the cross-over between these fields has been mostly focused on computer models with low …


Medical Applications Of Ultrasound: T-Cell Drug Delivery, Osteoporosis Diagnosis, And Biofilm Mitigation, Alina Karki Jan 2022

Medical Applications Of Ultrasound: T-Cell Drug Delivery, Osteoporosis Diagnosis, And Biofilm Mitigation, Alina Karki

Graduate College Dissertations and Theses

The ability of ultrasound to localize acoustic energy deposition and induce a biological effect within a target is examined in three novel biomedical applications: sonoporation, osteoporosis diagnosis, and biofilm mitigation.Ultrasound can excite encapsulated microbubbles, causing an acoustic cavitation effect in the vicinity of cells, temporarily increasing membrane permeability, and allowing cells to uptake foreign molecules. This non-viral transfection technique is called sonoporation. Our experimental study demonstrated that it could be effective for small interfering RNA (siRNA) delivery into an isolated mouse and human T-cells, which is a complex process despite its importance in treating numerous diseases. T-cells are non-proliferating, while …


Upcycling Dairy Manure Fine Solids Captured By Dissolved Air Flotation As Part Of A Phosphorus Recovery And Reuse Strategy, Katherine Keith Porterfield Jan 2021

Upcycling Dairy Manure Fine Solids Captured By Dissolved Air Flotation As Part Of A Phosphorus Recovery And Reuse Strategy, Katherine Keith Porterfield

Graduate College Dissertations and Theses

Dissolved air flotation (DAF) has shown potential to substantially improve phosphorus (P) mass balance on dairy farms by capturing P associated with fine solids from liquid manure, enabling new management options. However, at < 25% total solids, further dewatering and other upcycling is necessary to facilitate export of recovered fine solids off farm for use in bagged or bulk products. I generated plant foods using DAF-captured dairy manure fine solids thermally dried to 45% total solids blended with other organic residuals. Dry biomass of tomato and marigold seedlings amended with 6% v/v plant food was six-times greater than the unamended control and not significantly different from a market alternative treatment. Because thermal dewatering can be prohibitively costly, I generated a second batch of plant foods using DAF-captured dairy manure fine solids conditioned with 3, 4.5 and 6% (w/w) quicklime or lime kiln dust (LKD) and dewatered using a benchtop press for comparison with thermally dried fine solids. Tomato seedling biomass was similar for thermally dried and LKD plant foods, but quicklime plant foods had no effect compared to the unamended control. Quicklime and LKD conditioned fine solids contained approximately 30 and 10 times less plant-available P than thermally dried fine solids, respectively—likely due to precipitation of Ca-P minerals. These studies indicate that DAF-captured dairy manure fine solids could be upcycled to bagged horticultural products with substantial agronomic value, however sustainable materials drying remains a key challenge to realizing this potential.


Transient Effects In Solution-Processed Organic Thin Films, Jing Wan Jan 2021

Transient Effects In Solution-Processed Organic Thin Films, Jing Wan

Graduate College Dissertations and Theses

Due to the weak van der Waals forces between organic semiconductor molecules, the molecular packing depends sensitively on the processing methods and conditions. Thus, understanding the crystallization mechanisms during solution deposition are essential for fundamental studies and reproducible fabrication of electronic devices.The performance of Organic field effect transistors (OFETs) also depends heavily on extrinsic factors such as contact resistance and interfacial defects, which can produce a different kind of transient effect at the metal-semiconductor contact. We have observed structural transient effects during the crystallization process of two small molecule organic semiconductors made from solution. We report in situ X-ray scattering …


Nonlinear Impedance Spectroscopy To Characterize Hole Transport And Recombination Dynamics In Organic Semiconductor Devices, Robin Rice Jan 2021

Nonlinear Impedance Spectroscopy To Characterize Hole Transport And Recombination Dynamics In Organic Semiconductor Devices, Robin Rice

Graduate College Dissertations and Theses

Impedance Spectroscopy (IS) is an increasingly common technique to characterize both solid state and electrochemical systems including solar cells and light emitting diodes (LEDs). However, IS relies on a system response being linear with its input such that a time invariant impedance can be defined. This is usually achieved by a small amplitude input. However, doing so suppresses responses of the nonlinear processes which are of considerable interest to those designing and optimizing these devices, such as charge carrier recombination and space charge effects. This investigation employs the recently developed nonlinear extension to IS (NLIS) based in Fourier analysis of …


Exploring Hidden Networks Yields Important Insights In Disparate Fields Of Study, Laurence Clarfeld Jan 2021

Exploring Hidden Networks Yields Important Insights In Disparate Fields Of Study, Laurence Clarfeld

Graduate College Dissertations and Theses

Network science captures a broad range of problems related to things (nodes) and relationships between them (edges). This dissertation explores real-world network problems in disparate domain applications where exploring less obvious "hidden networks" reveals important dynamics of the original network.

The power grid is an explicit network of buses (e.g., generators) connected by branches (e.g., transmission lines). In rare cases, if k branches (a k-set) fail simultaneously, a cascading blackout may ensue; we refer to such k-sets as "defective". We calculate system risk of cascading failure due to defective 2-sets and 3-sets in synthetic test cases of the Polish and …


The Food-Energy-Water Nexus, Embodied Injustices, And Transboundary Sustainability, Sonya Ahamed Jan 2021

The Food-Energy-Water Nexus, Embodied Injustices, And Transboundary Sustainability, Sonya Ahamed

Graduate College Dissertations and Theses

Intersections of food, energy, and water systems (the FEW nexus) pose many sustainability and governance challenges, including risks to ecosystems, inequitable distribution of benefits and harms across populations, and reliance on distant sources for food, energy, and water. Nexus-based approaches can offer more holistic pathways for societal transitions to FEW systems that are just and sustainable, but tend to focus narrowly on inputs (e.g. water ‘for’ energy) in ways that do little to address the historical roots and structural underpinnings of current system inadequacies, thus risking their perpetuation.

This dissertation widens the FEW nexus in two contexts in which the …


Geomechanical, Geochemical, And Hydrological Aspects Of Co2 Injection Into Saline Reservoirs, Maziar Foroutan Jan 2021

Geomechanical, Geochemical, And Hydrological Aspects Of Co2 Injection Into Saline Reservoirs, Maziar Foroutan

Graduate College Dissertations and Theses

Carbon dioxide Capturing, and Sequestration (CCS) is a promising technique that helps mitigate the amount of CO2 emitted into the atmosphere. CCS process mainly involves capturing CO2 at the industrial plant, followed by transportation and injection into a suitable geological storage, under supercritical conditions. Saline aquifers are among the best geological storage candidates due to their availability, high storage capacity and injectivity. Despite the CCUS technology promise, several public safety concerns remain to be address, including but not limited to reservoir/wellbore stability and integrity, CO2 leakage, ground deformation (uplift) and induced seismicity.

The injected supercritical CO2 is trapped through different …


Microwave Assisted Heating Of A Ferromagnetically-Doped Propellant For Small Satellites: An Efficacy Study, Thomas Joseph Heffernan Jan 2020

Microwave Assisted Heating Of A Ferromagnetically-Doped Propellant For Small Satellites: An Efficacy Study, Thomas Joseph Heffernan

Graduate College Dissertations and Theses

In the interest of mitigating high launch costs, small satellites are often chosen as secondary payloads during launch operations. Their lower mission importance dictates stringent restrictions on the propulsion systems which can be implemented as they cannot contain combustible or toxic agents; a common solution to this prob- lem is implementation of micronozzles with cold-gas propellants in order to generate thrust. The present research explores the efficacy of leveraging microwave-assisted decomposition of a ’green’ chemical blowing agent, namely Azodicarbonamide, as a propellant for use in a microthruster. The thermal evolution of a heterogeneous ferromagnetic-doped propellant is analyzed numerically using COMSOL …


Exciton Coherence In 1d Phthalocyanine Based Organic Crystalline Thin Films, Kimngan Burrill Jan 2020

Exciton Coherence In 1d Phthalocyanine Based Organic Crystalline Thin Films, Kimngan Burrill

Graduate College Dissertations and Theses

Quantum coherence plays a vital role in the excitonic properties of organic semiconductors. Several theoretical and experimental studies have shown an unprecedented role of coherence in charge transfer and transport processes, which in turn can improve the performance of electronic devices. Specifically, an enhancement of exciton coherence size can result in fast energy transport and efficient charge separation. The ability to tailor the design and performance of organic electronics based on exciton coherence effects represents the possibility of ultrafast electronic applications in communication and information technology.

The objective of this thesis is the excitonic coherence studies of 1D crystalline thin …


Numerical Simulations Of An Inductively Coupled Plasma Torch, Samuel Whitmore Jan 2020

Numerical Simulations Of An Inductively Coupled Plasma Torch, Samuel Whitmore

Graduate College Dissertations and Theses

During entry into a planetary atmosphere, a blunt body (e.g. a spacecraft) traveling at hypersonic velocity creates a bow shock in front of it. In the highly energetic post shock environment, the body experiences heat transfer due to convective, chemical, and radiative processes. To protect the payload against this heating, a thermal protection system (TPS) is employed. Because a given propulsion system has a set amount of mass that it can launch to orbit, reducing the amount of mass used for TPS is desirable as this mass is freed up for mission-oriented payload. At the present, uncertainties in the flow …


Utilizing Machine Learning For Respiratory Rate Detection Via Radar Sensor, Anwar Elhadad Jan 2020

Utilizing Machine Learning For Respiratory Rate Detection Via Radar Sensor, Anwar Elhadad

Graduate College Dissertations and Theses

In this research, we investigate a data processing method to capture the respiratory rate of a person by utilizing a doppler radar to monitor their body movement during respiration. We utilize a machine learning algorithm with a radar sensor to capture the chest movement of a person while breathing and determine the respiratory rate according to that movement. We are using a Random Forest classifier to distinguish between different classes of pulses. After that, the algorithm constructs a sinusoidal signal representing the breathing rate of the sample. By applying this technique, we can detect the breathing rate accurately for different …


Three-Phase Hybrid Model Of Bacterial Biofilm Growth, Xing Jin Jan 2020

Three-Phase Hybrid Model Of Bacterial Biofilm Growth, Xing Jin

Graduate College Dissertations and Theses

Bacterial biofilms play a critical role in environmental processes, water treatment, human health, and food processing. They exhibit highly complex dynamics due to the interactions between the bacteria and the extracellular polymeric substance (EPS), water, nutrients, and minerals that make up the biofilm. In the current dissertation, a hybrid computational model was proposed for simulation of biofilm growth processes using a multiphase continuum for the transport of water and EPS, as well as nutrient diffusion, and discrete phase particles for simulation of bacterial cells and their interactions. Mass and momentum conservations of each phase and bacterial motion, rotation, growth, division, …


Reference Governors For Time-Varying Systems And Constraints, Collin Freiheit Jan 2020

Reference Governors For Time-Varying Systems And Constraints, Collin Freiheit

Graduate College Dissertations and Theses

Control systems are often subject to constraints imposed by physical limitations or safety considerations, and require means of constraint management to ensure the stability and safety of the system. For real-time implementation, constraint management schemes must not carry a heavy computational burden; however many of the current solutions are computationally unattractive, especially those with robust formulations. Thus, the design of constraint management schemes with low computational loads is an important and practical problem for control engineers. Reference Governor (RG) is an efficient constraint management scheme that is attractive for real-time implementation due to its low computational complexity and ease of …


Modeling Electric Vehicle Energy Demand And Regional Electricity Generation Dispatch For New England And New York, Sarah E. Howerter Jan 2019

Modeling Electric Vehicle Energy Demand And Regional Electricity Generation Dispatch For New England And New York, Sarah E. Howerter

Graduate College Dissertations and Theses

The transportation sector is a largest emitter of greenhouse gases in the U.S., accounting for 28.6% of all 2016 emissions, the majority of which come from the passenger vehicle fleet [1,2]. One major technology that is being investigated by researchers, planners, and policy makers to help lower the emissions from the transportation sector is the plug-in electric vehicle (PEV). The focus of this work is to investigate and model the impacts of increased levels of PEVs on the regional electric power grid and on the net change in CO2 emissions due to the decrease tailpipe emissions and the increase in …


An Analysis Of Energy Transitions At Different Scales: Fossil Fuel Divestment In Higher Education And Individual Behavior, Elizabeth Palchak Jan 2019

An Analysis Of Energy Transitions At Different Scales: Fossil Fuel Divestment In Higher Education And Individual Behavior, Elizabeth Palchak

Graduate College Dissertations and Theses

A sociotechnical energy transition requires both a shift to new technologies and attention to social issues like political movements, policy and human behavior. This dissertation investigates social elements of the renewable energy transition occurring at different scales. The core research questions are: How are universities creating and responding to the shifting language of fossil fuel investments? How and for whom do behavioral interventions work? And finally, do in-home displays (IHDs) change behaviors and attitudes of millennial energy users?

The three studies covered here occurred within higher education and reflect the importance of colleges and universities as dynamic players in energy …


Quadrature-Based Gravity Models For The Homogeneous Polyhedron, Jason Pearl Jan 2019

Quadrature-Based Gravity Models For The Homogeneous Polyhedron, Jason Pearl

Graduate College Dissertations and Theses

A number of missions to comets and asteroids have been undertaken by major space organizations driving a need to accurately characterize their gravitational fields. This is complicated however by their irregular shapes. To accurately and safely navigate spacecraft in these environments, a simple point-mass gravity model is insufficient and instead higher-fidelity models are required. Several such models exist for this purpose but all posess drawbacks. Moreover, there are some applications for which the currently available models are not particular well suited.

In this dissertation, numerical quadrature and curvilinear meshing techniques are applied to the small body gravity problem. The goal …


Coupled Thermal-Hydrological-Mechanical-Chemical Processes In Geothermal And Shale Energy Developments, Arash Kamali-Asl Jan 2019

Coupled Thermal-Hydrological-Mechanical-Chemical Processes In Geothermal And Shale Energy Developments, Arash Kamali-Asl

Graduate College Dissertations and Theses

Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes that exist in the development of different geo-resources (e.g. deep geothermal and shale gas) affect the fracture response (i.e. aperture and permeability), which in turn influences the reservoir production. The main goal of this study was to experimentally evaluate the impact of THMC processes on the response of rock specimens relevant for deep geothermal and shale gas formations. The effects of THMC processes were investigated on: (i) success of the hydraulic fracturing/hydro-shearing mechanism during stimulation stage, and (ii) closure of the created network of fractures during production stage.

The elastic, cyclic, creep, and failure characteristics of …


Quantifying The Seismic Vulnerability Of Bridges In Low To Moderate Seismicity Regions, John Edward Lens Jan 2019

Quantifying The Seismic Vulnerability Of Bridges In Low To Moderate Seismicity Regions, John Edward Lens

Graduate College Dissertations and Theses

The U.S. Congressional Research Service issued a report for Congress in May 2016, entitled” Earthquake Risk and U.S. Highway Infrastructure: Frequently Asked Questions” which highlighted the absence of a national database on the status of seismic vulnerability of bridges or other infrastructure, and thus no estimate of costs to retrofit vulnerable bridges. Low to moderate seismicity regions exist in each of the continental United States, with over 30 states having mostly or entirely low-to-moderate seismicity. Resources at state transportation agencies and municipalities are focused on higher seismicity regions, creating a gap in quantifying the system-wide seismic vulnerability despite an overall …


Edge-Of-Field Hydrology And Nutrient Fluxes Within Northeastern Agroecosystems: Evaluation Of Alternative Management Practices And Water Quality Models, Cameron Robert Twombly Jan 2019

Edge-Of-Field Hydrology And Nutrient Fluxes Within Northeastern Agroecosystems: Evaluation Of Alternative Management Practices And Water Quality Models, Cameron Robert Twombly

Graduate College Dissertations and Theses

Agricultural runoff is one of largest contributors of phosphorus (P), nitrogen (N), and sediment affecting freshwater systems in watersheds across the Northeastern U.S., including the Lake Champlain Basin in Vermont. Agricultural cropping systems, such as corn silage and haylands, used for dairy feed production have been shown to impact watershed hydrology and water quality. Agricultural best management practices (BMPs) have the potential to decrease runoff volumes and flow rates and the associated export of nutrients and sediment from agricultural fields. Many states in the Northeastern U.S., including Vermont, are beginning to require farmers to implement water quality BMPs and further …


An Autothermal, Representative Scale Test Of Compost Heat Potential Using Geostatistical Analysis, William J. Mccune-Sanders Jan 2018

An Autothermal, Representative Scale Test Of Compost Heat Potential Using Geostatistical Analysis, William J. Mccune-Sanders

Graduate College Dissertations and Theses

Composting has been practiced for thousands of years as a way of stabilizing and recycling organic matter into useful soil amendments. Thermophilic compost releases significant amounts of heat at temperatures (~140 °F) that are useful for environmental heating or process water. This heat has been taken advantage of in various ways throughout history, but development of a widely adopted technology remains elusive.

The biggest barrier to adoption of compost heat recovery (CHR) systems is projecting accurate, attractive economic returns. The cost of transfer equipment is significant, and with variability in composting substrates and methods, it is difficult to predict the …