Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston Jan 2023

Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston

Williams Honors College, Honors Research Projects

The motivation and objectives of this project is to examine the mechanisms of intergranular corrosion (IGC) and pitting corrosion of sensitized AA5083. In this regard, different characterization techniques were used, including optical analysis of microstructure, cyclic potentiodynamic polarization with Tafel fitting, electrochemical impedance spectroscopy with electrical equivalent circuit (EEC) fitting, and potentiostatic current transient monitoring. The transition from IGC to pitting corrosion occurs when the grain boundaries become saturated with the β-phase (Mg2Al3). It was found that AA5083 becomes more vulnerable to pitting corrosion as the degree of sensitization increases.


Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell Jan 2021

Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell

Theses and Dissertations

Biomass is one of the most abundant natural resources and has been used as a source of energy for thousands of years. Biomass as a precursor for energy storage materials is still relatively novel and faces several obstacles before becoming commonly used in today’s electrical devices. Currently, energy storage devices, such as batteries, capacitors, and supercapacitors, utilize petroleum-derived graphitic carbons for anodes, generating a need for more sustainable materials. Biomass, as a carbon-rich source for electrode materials, presents a viable and economically feasible alternative due to the prevalent lignocellulosic compounds: lignin, cellulose, and hemicellulose. Preliminary studies on the solid residues …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


The Theory Of Alloy Deposition And The Effect Of A Rotating Cathode Upon Such Deposition, With Special Attention To The Possibility Of Depositing Sterling Silver, Kenneth J. Stodden May 1941

The Theory Of Alloy Deposition And The Effect Of A Rotating Cathode Upon Such Deposition, With Special Attention To The Possibility Of Depositing Sterling Silver, Kenneth J. Stodden

Bachelors Theses and Reports, 1928 - 1970

In the past few years a great deal of atten­tion has been given to the electrodeposition of alloys. For the main part, this investigation has been of scien­tific interest only; but in a few instances, such work has attained commercial importance.