Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Determination Of Critical Experiment Correlations Via The Monte Carlo Sampling Technique, William Jay Marshall Dec 2017

Determination Of Critical Experiment Correlations Via The Monte Carlo Sampling Technique, William Jay Marshall

Doctoral Dissertations

Critical benchmark experiments are the foundation of validation of the computational codes used in criticality safety analyses because they provide a basis for comparison between the calculated results and the physical world. These experiments are often performed in series varying a limited number of parameters to isolate the effect of the independent parameter. The use of common materials, geometries, machines, procedures, detectors, or other shared features can create correlations among the resulting experiments. Most validation techniques used in criticality safety practice do not treat these correlations explicitly, and the effect of this is unclear as the correlations themselves are not …


Double Differential Neutron Yields Produced By Proton, Helium, And Iron Interactions In Thick Aluminum Targets, Natalie Ann Mcgirl Dec 2017

Double Differential Neutron Yields Produced By Proton, Helium, And Iron Interactions In Thick Aluminum Targets, Natalie Ann Mcgirl

Doctoral Dissertations

Recent calculations of galactic cosmic ray (GCR) transport in enclosed, shielded space environments indicate that a minimum dose equivalent is achieved with aluminum shielding thicknesses near 20 g/cm2 [grams per centimeter squared]. Increases in the absorbed dose and dose equivalent with shielding thicknesses above 20 g/cm2 are believed to be caused by the production of light ions and neutrons in the thick shielding. However, uncertainties surround these calculations due to limited cross section and yield data for high-energy projectiles incident on thick targets. Thick-target neutron yields are particularly valuable measurements since they are produced over a wide range …


Novel Fission Track Detection For Identification And Characterization Of Special Nuclear Materials, Jonathan Allen Gill Dec 2017

Novel Fission Track Detection For Identification And Characterization Of Special Nuclear Materials, Jonathan Allen Gill

Doctoral Dissertations

Fission track detection and analysis is used primarily in nuclear safeguards to identify special nuclear material. Identification of isotopic ratios is a crucial step in understanding the intended use of nuclear material and the nature of the materials production cycle. Unfortunately, this methodology uses etchable track detectors that require significant expertise and intensive labor to process.

This study developed a novel method using lithium fluoride (LiF) as a fluorescing nuclear track detector to conduct fission track analysis for isotopic prediction of uranium enrichment. Individual latent tracks produced by fission products were observed in LiF for the first time. These tracks …


Nestle To Origami Coupling: A Nuclear Non-Proliferation Tool For Lwr Fuel Assembly Isotope Analysis, Margaret Alva Kurtts Dec 2017

Nestle To Origami Coupling: A Nuclear Non-Proliferation Tool For Lwr Fuel Assembly Isotope Analysis, Margaret Alva Kurtts

Doctoral Dissertations

NESTLE to ORIGAMI coupling is a versatile nuclear modeling tool that allows researchers to directly observe the impact of operator induced changes on LWR assembly isotope production. The paper presents an experimental method by which to test the ability of an operator to manipulate the core neutron spectrum in order to produce higher quality plutonium for weapons use. The paper presents two plutonium production scenarios and evaluates their feasibility based on potential for detection and production capacity. Reactor modeling of a VVER-1000 uses NESTLE core simulation software. NESTLE outputs burnup and relative power information for all nodes in the core. …


Determining 235u Enrichment Using A Dual-Energy Approach For Delayed Neutron Measurements, Angela Lynn Lousteau Dec 2017

Determining 235u Enrichment Using A Dual-Energy Approach For Delayed Neutron Measurements, Angela Lynn Lousteau

Doctoral Dissertations

Bulk uranium items are often measured using active neutron interrogation systems to take advantage of the relatively high penetrability of neutrons, providing the ability to quickly and accurately measure uranium masses in large, dense configurations. Active techniques employ an external neutron source to induce fission in the uranium and subsequently measure emitted prompt fission or delayed neutrons. Unfortunately, the emitted neutrons from 235U [uranium-235] and 238U [uranium-238] are, for all practical purposes, indistinguishable; therefore, commonly used systems such as the Active Well Coincidence Counter, the 252Cf [californium-252] Shuffler, and other systems based on measurement of prompt or …


Methodology For An Advanced Risk Assessment Of Crud Induced Power Shift Using Coupled Multi-Physics Simulations And A Monte Carlo Scenario Analysis Of The Potential Financial Benefits, Travis Louis Lange Dec 2017

Methodology For An Advanced Risk Assessment Of Crud Induced Power Shift Using Coupled Multi-Physics Simulations And A Monte Carlo Scenario Analysis Of The Potential Financial Benefits, Travis Louis Lange

Doctoral Dissertations

Beginning in the 1970's, power uprates in nuclear power plants began to cause an operational problem called Crud Induced Power Shift (CIPS). Over decades, a method has been developed and refined that has allowed industry to effectively avoid CIPS. However, increasingly challenging economic environments have caused power plants to utilize more aggressive core designs. The problem of CIPS still looms over many reactors as a potential hazard requiring conservative measures. CIPS is due to complex physical and chemical interactions. Current industry methods use multiple single-physics simulations in their analyses. However, improved 3D multi-physics models of CIPS can provide a better …


Improvements To The Predictive Capability Of Fcm Fuel Performance Modeling, Daniel Philip Schappel Aug 2017

Improvements To The Predictive Capability Of Fcm Fuel Performance Modeling, Daniel Philip Schappel

Doctoral Dissertations

A proposed fuel type for improved accident performance in LWRs (Light Water Reactors) involves TRISO (Tristructural-Isotropic) particles embedded in a NITE (Nano Infiltrated Eutectic) silicon carbide matrix. TRISO fuel particles contain a spherical fuel kernel of about 500 to in excess of 800 microns in diameter. The kernel and buffer layer are then coated with three isotropic layers consisting of a dense inner pyrolytic carbon (IPyC), a silicon carbide (SiC) layer, and an outer pyrolytic carbon (OPyC) layer. These layers are about 40 microns thick. The TRISO particle packing fraction in the NITE-SiC matrix is expected to be about 40 …


Intrusion Detection Of A Simulated Scada System Using A Data-Driven Modeling Approach, Brien Alen Jeffries Aug 2017

Intrusion Detection Of A Simulated Scada System Using A Data-Driven Modeling Approach, Brien Alen Jeffries

Doctoral Dissertations

Supervisory Control and Data Acquisition (SCADA) are large, geographically distributed systems that regulate help processes in industries such as nuclear power, transportation or manufacturing. SCADA is a combination of physical, sensing, and communications equipment that is used for monitoring, control and telemetry acquisition actions. Because SCADA often control the distribution of vital resources such as electricity and water, there is a need to protect these cyber-physical systems from those with possible malicious intent. To this end, an Intrusion Detection System (IDS) is utilized to monitor telemetry sources in order to detect unwanted activities and maintain overall system integrity.

This dissertation …


Integrating Disparate Nuclear Data Sources For Improved Predictive Maintenance Modeling: Maintenance-Based Prognostics For Long-Term Equipment Operation, Zachary Allen Welz Aug 2017

Integrating Disparate Nuclear Data Sources For Improved Predictive Maintenance Modeling: Maintenance-Based Prognostics For Long-Term Equipment Operation, Zachary Allen Welz

Doctoral Dissertations

The United States (US) nuclear industry is one of the most heavily regulated businesses in the world, creating a culture of world-class design, operation, and maintenance. In an article published on modern maintenance technologies, Terrence OHanlon (past Chief Asset Manager for Reliabilityweb.com) stated, “world class companies often devote up to 50 percent of their entire maintenance resources to condition based monitoring and the planned work that is required as a result of the findings” [1]. One would expect US nuclear power plants to constantly upgrade, improve, and expand their operations and maintenance departments and tactics. Since the early 1990s, US …


Thermodynamic Characterization And Isothermal Separability Of Heavy Fission Product Chelates For Post-Detonation Nuclear Forensic Analysis, Steven Adam Stratz May 2017

Thermodynamic Characterization And Isothermal Separability Of Heavy Fission Product Chelates For Post-Detonation Nuclear Forensic Analysis, Steven Adam Stratz

Doctoral Dissertations

Nuclear terrorism, one of the most critical threats to national security, exhibits complexities that do not exist with similar threats from sanctioned state actors. Responding to a domestic nuclear terrorism strike is difficult when the original source of the weapon may be unknown, given that terrorist organizations (at the time of writing) do not themselves have nuclear technology sufficient to design and build nuclear weapons. Consequently, the development of forensic techniques to help source and characterize nuclear weapons after detonation has recently become an area of interest. This relatively new field of science, known as post-detonation nuclear forensics, aims to …


Sensitivity Of Vver-1000 Spent Fuel Pin Nuclide Inventory To Operational Parameters, Nicholas Patrick Luciano May 2017

Sensitivity Of Vver-1000 Spent Fuel Pin Nuclide Inventory To Operational Parameters, Nicholas Patrick Luciano

Doctoral Dissertations

Tools that can rapidly compute the isotopic composition of spent nuclear fuel (SNF) are useful for many reasons, including safety and security. Although tools exist to compute approximate isotopic compositions, detailed fuel composition requires reactor simulation that result from normal and off-normal operations. Reactor simulation is typically performed using nodal core simulators. These codes perform their calculations rapidly, but they may not compute isotopic composition.

The Russian designed VVER is a pressurized water reactor that uses hexagonal fuel assemblies with triangularly pitched fuel rods and annular pellets. The international expansion of VVER-1000 reactor technology has motivated a renewed interest in …


Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini May 2017

Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini

Doctoral Dissertations

The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical efforts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization efficiency, often less than tenths of a percent; the majority of …


An Optimization Method For Matched Abundance-Ratio Cascades By Varying The Key Weight, Richard Dale Harvey May 2017

An Optimization Method For Matched Abundance-Ratio Cascades By Varying The Key Weight, Richard Dale Harvey

Doctoral Dissertations

The theory of multicomponent isotope separation in matched abundance-ratio cascades (MARC) has been well established by Cohen, de la Garza, von Halle, and others. Because separation factors of different isotopes vary in the same separator, isotopic weight fractions cannot be matched in the same sense as in a two-component ideal system. Therefore, the abundance ratios of the desired isotope and a selected key isotope are matched, hence the name. These ratios are matched by choosing a key weight between the two selected components of separation.

Desirable stable isotopes for separation can exist as minor components of a natural, multicomponent isotope …


Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark May 2017

Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark

Doctoral Dissertations

The goal of this work was to perform a computational investigation into the thermalhydraulic performance of water-cooled, twisted tape enabled high heat flux components at fusion relevant conditions. Fusion energy is a promising option for future clean energy generation, but the community must overcome significant scientific and engineering challenges before meeting the goal of electricity generation. One such challenge is the high heat flux thermal management of components in fusion and plasma physics experiments. Plasma facing components in the magnetic confinement devices, such as ITER or W7-X, will be subjected to extreme heat loads on the order of 10-20 MW/m …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Creating And Operating The Nuclear Urban Kinetics Effects Simulator, Jerrad Phillip Auxier May 2017

Creating And Operating The Nuclear Urban Kinetics Effects Simulator, Jerrad Phillip Auxier

Doctoral Dissertations

The ability to create an accurate method for determining the composition of post-detonation debris in an urban environment is an essential component of a proper nuclear forensics program. The methods necessary to create a high fidelity computer for modeling urban debris matrix creation is addressed. These methods include detonations varying in location in the lower 48 continental states and the yield of the weapon.

The ultimate goal of the research conducted in this area is to provide the nuclear forensics community with an effects modeling code that generates accurate urban surrogate recipes to be analyzed in laboratories. This code can …


Studies On Neutron Diffraction And X-Ray Radiography For Material Inspection, Fahima Fahmida Islam Jan 2017

Studies On Neutron Diffraction And X-Ray Radiography For Material Inspection, Fahima Fahmida Islam

Doctoral Dissertations

"Among the different probes to study the structures of the bio and structural materials, X-ray and neutron are widely used because of their distinctive usefulness in investigating different structures. X-ray radiography and neutron diffraction are two widely known non-destructive techniques for material inspection. Here we demonstrate the design of neutron diffractometer with low power source and analyze the digital image produced by the X-ray radiography instead of neutron diffraction because of the availability of the data. Neutron diffraction is a powerful tool for understanding the behavior of crystal structures and phase behaviors of materials. While neutron diffraction capabilities continue to …


Gamma Spectroscopy By Artificial Neural Network Coupled With Mcnp, Huseyin Sahiner Jan 2017

Gamma Spectroscopy By Artificial Neural Network Coupled With Mcnp, Huseyin Sahiner

Doctoral Dissertations

"While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization …


Discrete Ordinates Ct Organ Dose Simulator (Doctors), Edward T. Norris Jan 2017

Discrete Ordinates Ct Organ Dose Simulator (Doctors), Edward T. Norris

Doctoral Dissertations

"Computed tomography (CT) has become pervasive in medical diagnostics as improved imaging techniques and processing algorithms provide higher quality information to doctors. However, the exponentially increasing usage of CT has raised concerns regarding long term low-dose radiological risks.

Currently, the dose to patients is computed using Monte Carlo methods and experimental tests. In other areas of radiation transport, deterministic codes have been shown to be much faster than Monte Carlo codes.

Currently, no deterministic methodology exists to automatically generate a spatially distributed dose profile from a CT voxel phantom. This work proposes a new code, Discrete Ordinate CT Organ Dose …