Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Theses/Dissertations

2021

Institution
Keyword
Publication

Articles 61 - 74 of 74

Full-Text Articles in Engineering

Modulation Of Actin Filament Severing And Mechanics By Gelsolin In Varying Ph Conditions, Claire Toland Jan 2021

Modulation Of Actin Filament Severing And Mechanics By Gelsolin In Varying Ph Conditions, Claire Toland

Electronic Theses and Dissertations, 2020-

Actin is an essential cytoskeletal protein that plays a critical role in cell mechanics, structure and organization with the help of actin binding proteins (ABPs). Gelsolin is a calcium-dependent ABP that severs actin filaments and caps them at their barbed end, regulating cell motility and signaling through dynamic actin cytoskeleton remodeling. A recent study has indicated that low pH stabilizes the active conformations of gelsolin. Additionally, the binding of gelsolin to the barbed end of an actin filament induces a conformational change that propagates along the actin filament. However, it has not been well understood how the complex intracellular environments …


A Molecular Dynamic Study On The Piezoelectric Properties Of Bulk Zns And Nanobelts, Rui Xie Jan 2021

A Molecular Dynamic Study On The Piezoelectric Properties Of Bulk Zns And Nanobelts, Rui Xie

Theses, Dissertations and Capstones

In this thesis we proved the feasibility of using classical atomic simulations, namely molecular dynamics and molecular statics, to study the piezoelectric properties of bulk and nanobelts ZnS structures, by utilizing the core-shell atomic potential model. Based on the verification of bulk and nanobelts ZnO piezoelectric constants, utilizing LAMMPS scripts and the Nyberg et al. core-shell potential, we reported the bulk ZnS piezoelectric constants calculated using three different classical interatomic core-shell ZnS potentials; the Wright and Jackson (1995) potential, the Wright and Gale (2004) potential, and the Namsani et al. (2015) potential. The simulation results showed that the Wright and …


Investigation Of Spontaneously Patterned Nanoporous Organosilicate Thin Film Channels For Liquid Chromatography Applications., Ashwin Sanjay Bhaskaran Jan 2021

Investigation Of Spontaneously Patterned Nanoporous Organosilicate Thin Film Channels For Liquid Chromatography Applications., Ashwin Sanjay Bhaskaran

Graduate Research Theses & Dissertations

Microscale devices are attractive options for the advancement of biomedical engineering and life science. They have huge potential in the pharmaceutical and biomedical fields provided the critical factors such as device size, product purity and efficiency are not a hindrance. In most cases, traditional microelectronics fabrication processes are quite costly and complicated. By improving on them, their application in fields such as chemical sensing, detection and analysis is possible. By implementing this on a chip, we can reduce the cost and improve portability. This thesis focuses on the investigation of a novel class of spontaneously patterned nanoporous organosilicate nanoparticle-based films …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah Jan 2021

Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah

Theses and Dissertations--Chemical and Materials Engineering

Remediation of environmental pollutants from water is one of the major challenges in the 21st century. Utilizing novel polymeric materials to accomplish this challenge has garnered a lot of interest in recent times. Flexibility in synthesizing as well as functionalizing makes them attractive for their application in pollutant remediation. This work is based on development and characterization of novel crosslinked polymeric as well as linear polymeric materials from biphenyl-based monomers, biphenyl based crosslinker and a temperature responsive monomer (Nisopropylacrylamide (NIPAAm)) for their application in remediation of toxic pollutants such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and iron oxide nanoparticle …


Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Designing Transition Metal Chalcogenides Electrocatalyst Surfaces For High-Efficiency Water Oxidation, Umanga De Silva Jan 2021

Designing Transition Metal Chalcogenides Electrocatalyst Surfaces For High-Efficiency Water Oxidation, Umanga De Silva

Doctoral Dissertations

”The rising demand for energy security and reducing fossil fuel dependence has prompted researchers to search for a clean, sustainable, and efficient energy generation system with low environmental impact. Water electrolysis has been identified as one of the most important processes satisfying the above needs to generate hydrogen as a clean fuel. Two half-cell reactions of oxygen evolution reaction (OER) at the anode and hydrogen evolution reaction (HER) at the cathode comprise the main process of water electrolysis. However, the oxygen evolution reaction is the most crucial step for efficient water splitting. Traditionally, metal oxides have been utilized as catalysts …


Tuning The Wettability Of Metal Surface With Electrodeposited Porous Copper And Graphene Coatings, Husam Eltigani Jan 2021

Tuning The Wettability Of Metal Surface With Electrodeposited Porous Copper And Graphene Coatings, Husam Eltigani

Chulalongkorn University Theses and Dissertations (Chula ETD)

Electrodeposition of porous copper is an interesting type of coating that is emerging for various applications. However, the understanding of the relationships between copper surface wettability control and electrodeposition parameters and post-electrodeposition storage conditions is quite limited. Furthermore, it is worthwhile to explore how nanomaterials such as graphene would interact with porous copper to provide surface wettability modifications. This work therefore aims to develop a framework for the relationship of copper and graphene deposition processes, storage conditions, and the wetting behavior of copper surfaces. The research work performed in this study is divided into 2 parts: (i) effects of plating …


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Development Of Chemical Methods For Oligonucleotide Purification, Paramagnetic Labeling And Synthesis Of Dna-Based Advanced Materials, Muhan He Jan 2021

Development Of Chemical Methods For Oligonucleotide Purification, Paramagnetic Labeling And Synthesis Of Dna-Based Advanced Materials, Muhan He

Legacy Theses & Dissertations (2009 - 2024)

This thesis describes a chemical method for alternative oligonucleotide purification that is non-chromatographic and gel-free and allows to routinely synthesize and purify long functional RNA strands. The purification of long RNAs is based on the bio-orthogonal inverse electron demand Diels-Alder (IEDDA) chemistry between trans-cyclooctene (TCO) and tetrazine (Tz). Target oligonucleotide strands are selectively tagged with Tz and can be captured and purified from the failure sequences with immobilized TCO. RNA strands are synthesized on solid support through a photolabile linker to avoid the loss of Tz tag. Purity of the isolated oligonucleotides was evaluated using gel electrophoresis, HPLC and mass …


Investigating The Antitumor Effects Of A Dsrna-Nanoparticle Complex In An In Vitro Ovarian Cancer Model, Aaron Lewis Jan 2021

Investigating The Antitumor Effects Of A Dsrna-Nanoparticle Complex In An In Vitro Ovarian Cancer Model, Aaron Lewis

Theses and Dissertations (Comprehensive)

An estimated 1 in 70 women will be diagnosed with ovarian cancer in their lifetime. Despite advanced detection and treatment methods, it remains a silent killer with an expected survival rate of 50%. A developing method in cancer treatment is the use of compounds that stimulate the immune system to aid in the body's fight against the disease. This project focused on the use of the potent immune stimulant double-stranded RNA (dsRNA), commercially available as polyinosinic:polycytidylic acid, poly(I:C), to induce cytotoxicity in two ovarian cancer cell lines; SKOV-3 and OVCAR-3. Some challenges exist with the delivery of dsRNA due to …


Strengthening Mechanisms In Nanocrystalline Silver-Nickel Nanolayered Materials, Malcolm Ryan Pringle Jan 2021

Strengthening Mechanisms In Nanocrystalline Silver-Nickel Nanolayered Materials, Malcolm Ryan Pringle

Graduate College Dissertations and Theses

Among all metals, silver has the highest electrical conductivity but also is one of the softest materials under mechanical deformation. Therefore, developing means and methods for strengthening silver without reducing conductivity is critically important for its use as a conductive electrode material in various engineering applications such as solar cells and touchscreen displays. This thesis presents a molecular-dynamics simulation study of strengthening mechanisms by intercalating nanocrystalline silver films with amorphous nickel layers, characterizing the structure of nanolayered material prototypes obtained by sputtering deposition technique. The objectives of the thesis are three-fold: To study the effects of Ni layer thickness and …