Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Single-Sided Crash Cushion System, John D. Reid, John R. Rohde, Dean L. Sicking Dec 2006

Single-Sided Crash Cushion System, John D. Reid, John R. Rohde, Dean L. Sicking

Department of Mechanical and Materials Engineering: Faculty Publications

A single-sided crash attenuation cushion system having an impact head and three stage energy absorption mechanism. The energy absorbing mechanism has a mandrel for deforming thin-walled tubes in a controlled collapse to absorb impact forces from a colliding vehicle. The third stage of the absorption mechanism includes an additional deformable compressible tube between the fixed-object hazard and the thin walled tubes.


Effects Of Polishing Shot-Peened Surfaces On Fretting Fatigue Behavior Of Ti-6al-4v, Kasey S. Scheel Sep 2006

Effects Of Polishing Shot-Peened Surfaces On Fretting Fatigue Behavior Of Ti-6al-4v, Kasey S. Scheel

Theses and Dissertations

The research of this thesis was done to investigate the effects of polishing a shot-peened specimen of Ti-6Al-4V on the fretting fatigue life of that specimen. The shot-peening process, though one of the most beneficial techniques in prolonging fretting fatigue life, creates a textured surface that may lead to problems on the micro level. This research was done in an attempt to further improve the peening process by examining the effects of another surface treatment to be used in conjunction, surface polishing. The rough peened surface may contain abrupt changes in surface geometry that act as stress risers, which are …


Effects Of Phase Difference Between Axial And Contact Loads On Fretting Fatigue Behavior Of Titanium Alloy, Mohammad Almajali Sep 2006

Effects Of Phase Difference Between Axial And Contact Loads On Fretting Fatigue Behavior Of Titanium Alloy, Mohammad Almajali

Theses and Dissertations

Fretting fatigue is the surface damage that occurs at the interface between two components that are undergoing a small amplitude oscillatory movements. It results in a reduction of the material life as compared to the plain fatigue. Most of the previous works were accomplished under a constant applied normal load and a little effort was done under a variable contact load, while none of these studies has considered the phase difference between the axial load and the contact load. The primary goal of this study is to investigate the effect of phase difference between axial and contact loads on fretting …


End Splice Assembly For Box-Beam Guardrail And Terminal Systemis, John D. Reid, John R. Rohde, Dean L. Sicking, King K. Mak Aug 2006

End Splice Assembly For Box-Beam Guardrail And Terminal Systemis, John D. Reid, John R. Rohde, Dean L. Sicking, King K. Mak

Department of Mechanical and Materials Engineering: Faculty Publications

An end splice assembly for a box-beam guardrail and terminal system having a first stage rail element and a second stage rail element. The assembly has two major connecting components. Upper and lower bent plate channels and upper and lower channel splice plates. The channels and plates have side walls which extend laterally to one another when the two rail elements are mated. The channels and plates are fastened together to provide moment strength to the splice within the system.


Preparation Of High-Strength Nanometer Scale Twinned Coating And Foil, Xinghang Zhang, Amit Misra, Michael Nastasi, Richard G. Hoagland Jul 2006

Preparation Of High-Strength Nanometer Scale Twinned Coating And Foil, Xinghang Zhang, Amit Misra, Michael Nastasi, Richard G. Hoagland

Department of Mechanical and Materials Engineering: Faculty Publications

Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.


Wear Analysis Of Cu-Al Coating On Ti-6al-4v Under Fretting, Karl N. Murray Jun 2006

Wear Analysis Of Cu-Al Coating On Ti-6al-4v Under Fretting, Karl N. Murray

Theses and Dissertations

The effects of changes in the coefficient of friction (CoF) between the contacting surfaces on the fretting wear characteristics of Cu-Al coating on Ti-6Al-4V were investigated. This Cu-Al coating is part of a system that is applied to titanium turbine blades to reduce fretting at the interface. In the application, there is a solid lubricant that is added on top of the coating as an assembly aid and to help reduce the friction while the lubricant remains within the contact. Previous studies have researched the characteristics of the coating without the additional lubricant. In this study, liquid motor oil was …


Modeling And Representation Of Geometric Tolerances Information In Integrated Measurement Processes, Xiaoping Zhao, T. M. Kethara Pasupathy, Robert G. Wilhelm May 2006

Modeling And Representation Of Geometric Tolerances Information In Integrated Measurement Processes, Xiaoping Zhao, T. M. Kethara Pasupathy, Robert G. Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

Modeling and representation of geometric tolerances information across an enterprise is viable due to the advances in Internet technologies and increasing integration requirements from industry. In Integrated Measurement Processes (IMP), geometric tolerances data model must support different models from several well-defined standards: including ASME Y14.5M-1994, STEP, DMIS, and others. In this paper, we propose a layered conformance level geometric tolerances representation model. This model uses the widely applied ASME Y14.5M-1994 as its foundation layer by abstracting most information from this standard. The additional geometric tolerances information defined by DMIS and STEP is incorporated into this model to form corresponding conformance …


Flexible Tools For Specifying Design Variation, Trichy Pasupathy, Xiaoping Zhao, Robert Wilhelm Apr 2006

Flexible Tools For Specifying Design Variation, Trichy Pasupathy, Xiaoping Zhao, Robert Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

This paper describes flexible tools for specifying design variations that are based on nonuniform profile tolerance definitions. These tools specify bounds of design performance that can be used for negotiation among engineers in a collaborative design process. These specification methods allow for the capture of many different design functions that are not easily described with current tool designs. In addition, these specification methods lend themselves to efficient verification methods. Profile tolerance definitions provide the most general variation controls for complex mechanical surfaces. Common design practices and engineering standards for profile tolerances exhibit many weaknesses and limitations. We present a rationale …


Validation Of A Scaled Plane Strain Hypervelocity Gouging Model, Ronald J. Pendleton Mar 2006

Validation Of A Scaled Plane Strain Hypervelocity Gouging Model, Ronald J. Pendleton

Theses and Dissertations

The phenomenon of high speed impact is of great interest to the Air Force of Scientific Research and the Air Force Research Laboratory's Holloman High Speed test track. Rocket sled tests at the facility frequently are limited to velocities lower than actually attainable due to damage to the rail in the form of gouges. Direct observation of the gouging phenomenon is not currently possible. This leaves computational modeling as the only means to study the phenomenon. A computer model has previously been used to model the development of gouging at the Holloman High Speed Test Track. However, this model has …


Evaluation Of Factors Contributing To Damping Of Coated And Uncoated Titanium Plates, Dustin W. Lee Mar 2006

Evaluation Of Factors Contributing To Damping Of Coated And Uncoated Titanium Plates, Dustin W. Lee

Theses and Dissertations

High Cycle Fatigue (HCF) is the leading cause of component failure in gas turbine engines today, which poses great risk to aircraft, engines, and their crews. Mitigation of HCF effects has become a priority topic, and the damping benefits of hard coatings are being reevaluated for this purpose. Research was conducted to further understanding of damping measurements on these coatings. This study continues work to characterize the damping effects of a magnesium aluminate spinel (mag spinel) coating applied to a titanium plate via vibration testing. Two different plate sizes were evaluated in a clamped-free-free-free condition and a free-free-free-free condition, respectively. …


Numerical Simulation Of Nonlinear Elastic Wave Propagation In Piecewise Homogeneous Media, Arkadi Berezovski, Mihhail Berezovski, Juri Engelbrecht Jan 2006

Numerical Simulation Of Nonlinear Elastic Wave Propagation In Piecewise Homogeneous Media, Arkadi Berezovski, Mihhail Berezovski, Juri Engelbrecht

Publications

Systematic experimental work [S. Zhuang, G. Ravichandran, D. Grady, J. Mech. Phys. Solids 51 (2003) 245–265] on laminated composites subjected to high velocity impact loading exhibits the dispersed wave field and the oscillatory behavior of waves with respect to a mean value. Such a behavior is absent in homogeneous solids. An approximate solution to the plate impact in layered heterogeneous solids has been developed in [X. Chen, N. Chandra, A.M. Rajendran, Int. J. Solids Struct. 41 (2004) 4635–4659]. The influence of the particle velocity on many process characteristics was demonstrated. Based on earlier results [A. Berezovski, J. Engelbrecht, G.A. Maugin, …


Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain Jan 2006

Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain

Mechanical Engineering Faculty Research

The susceptibility of martensitic Alloy EP-823 to stress corrosion cracking was evaluated with and without an applied cathodic potential using the slow-strain-rate (SSR) testing technique. The magnitude of the applied potential was based on the corrosion potential determined by cyclic polarization. The cracking susceptibility in an acidic environment at different temperatures was expressed in terms of the true failure stress (ơf), time to failure (TTF), and ductility parameters, including percent elongation (%El) and percent reduction in area (%RA). The data indicate that the magnitudes of ơr, TTF, %El, and %RA were reduced due to cathodic charging. …


Nanoparticle-Induced Negative Differential Resistance And Memory Effect In Polymer Bistable Light-Emitting Device, Ricky J. Tseng, Jianyong Ouyang, Chih-Wei Chu, Jinsong Huang, Yang Yang Jan 2006

Nanoparticle-Induced Negative Differential Resistance And Memory Effect In Polymer Bistable Light-Emitting Device, Ricky J. Tseng, Jianyong Ouyang, Chih-Wei Chu, Jinsong Huang, Yang Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Recently, electrical bistability was demonstrated in polymer thin films incorporated with metal nanoparticles [J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Nat. Mater. 3, 918 (2004)]. In this letter, we show the evidence that electrons are the dominant charge carriers in these bistable devices. Direct integration of bistable polymer layer with a light-emitting polymer layer shows a unique light-emitting property modulated by the electrical bistability. A unique negative differential resistance induced by the charged gold nanoparticles is observed due to the charge trapping effect from the nanoparticles when interfaced with the light-emitting layer.


The Role Of Electrospinning In The Emerging Field Of Nanomedicine, S. Y. Chew, Y. Wen, Yuris A. Dzenis, K. W. Leong Jan 2006

The Role Of Electrospinning In The Emerging Field Of Nanomedicine, S. Y. Chew, Y. Wen, Yuris A. Dzenis, K. W. Leong

Department of Mechanical and Materials Engineering: Faculty Publications

The fact that in vivo the extracellular matrix or substratum with which cells interact often includes topography at the nanoscale underscores the importance of investigating cell-substrate interactions and performing cell culture at the submicron scale. An important and exciting direction of research in nanomedicine would be to gain an understanding and exploit the cellular response to nanostructures. Electrospinning is a simple and versatile technique that can produce a macroporous scaffold comprising randomly oriented or aligned nanofibers. It can also accommodate the incorporation of drug delivery function into the fibrous scaffold. Endowed with both topographical and biochemical signals such electrospun nanofibrous …


Piezoelectromagnetic Waves In A Ceramic Plate Between Two Ceramic Half-Spaces, S. N. Jiang, Q. Jiang, X. F. Li, S. H. Guo, H. G. Zhou, J. S. Chang Jan 2006

Piezoelectromagnetic Waves In A Ceramic Plate Between Two Ceramic Half-Spaces, S. N. Jiang, Q. Jiang, X. F. Li, S. H. Guo, H. G. Zhou, J. S. Chang

Department of Mechanical and Materials Engineering: Faculty Publications

We analyze the propagation of piezoelectromagnetic waves guided by a plate of polarized ceramics between two ceramic half-spaces. An exact dispersion relation is obtained, which reduces to a few known elastic, electromagnetic, and quasistatic piezoelectric wave solutions in the literature as special cases. Numerical solutions to the equation that determines the dispersion relation show the existence of guided waves. The results are useful for acoustic wave and microwave devices.


Efficient Inverted Polymer Solar Cells, G. Li, C.-W. Chu, V. Shrotriya, Jinsong Huang, Y. Yang Jan 2006

Efficient Inverted Polymer Solar Cells, G. Li, C.-W. Chu, V. Shrotriya, Jinsong Huang, Y. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We investigate the effect of interfacial buffer layers—vanadium oxide (V2O5) and cesium carbonate (Cs2CO3)—on the performance of polymer solar cells based on regioregular poly-(3-hexylthiophene) and [6,6]-phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabricated with the structure of indium tin oxide (ITO)/Cs2CO3/polymer blend/vanadium oxide (V2O5)/aluminum (Al). Short-circuit current of 8.42 mA/cm2, open-circuit voltage of 0.56 V, and power conversion efficiency of …


Improving The Power Efficiency Of White Light-Emitting Diode By Doping Electron Transport Material, Jinsong Huang, Wei-Jen Hou, Juo-Hao Li, Gang Li, Yang Yang Jan 2006

Improving The Power Efficiency Of White Light-Emitting Diode By Doping Electron Transport Material, Jinsong Huang, Wei-Jen Hou, Juo-Hao Li, Gang Li, Yang Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Highly efficient white light emission was realized via the partial energy transfer from blue host polyfluorene (PF) to orange light emission dopant rubrene. A more balanced charge transport was achieved by adding an electron transport material, 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,4-oxadiazole (PBD), into the PF-rubrene system to enhance the electron transportation. Efficiency improvement by as much as a factor of 2 has been observed through the addition of PBD. These devices can easily reach high luminance at low driving voltages, thus achieving high power efficiency at high luminance (14.8, 13.5, and 12.0 lm/W at the luminances of 1000, 2000, and 4000 cd/m2, …


In Vivo Laparoscopic Robotics, Mark E. Rentschler, Stephen R. Platt, Jason Dumpert, Shane M. Farritor, Dmitry Oleynikov Jan 2006

In Vivo Laparoscopic Robotics, Mark E. Rentschler, Stephen R. Platt, Jason Dumpert, Shane M. Farritor, Dmitry Oleynikov

Department of Mechanical and Materials Engineering: Faculty Publications

Robotic laparoscopic surgery is evolving to include in vivo robotic assistants. The impetus for the development of this technology is to provide surgeons with additional viewpoints and unconstrained manipulators that improve safety and reduce patient trauma. A family of these robots have been developed to provide vision and task assistance. Fixed-base and mobile robots have been designed and tested in animal models with much success. A cholecystectomy, prostatectomy, and nephrectomy have all been performed with the assistance of these robots. These early successful tests show how in vivo laparoscopic robotics may be part of the next advancement in surgical technology.