Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …


Cold-Formed Steel Strength Predictions For Combined Bending And Torsion, Yu Xia, Robert S. Glauz, Benjamin W. Schafer, Michael Seek, Hannah B. Blum Jan 2023

Cold-Formed Steel Strength Predictions For Combined Bending And Torsion, Yu Xia, Robert S. Glauz, Benjamin W. Schafer, Michael Seek, Hannah B. Blum

Engineering Technology Faculty Publications

Locally slender cross-section members, such as cold-formed steel Cee and Zee sections, are susceptible to significant twisting and high warping torsion stresses. Torsion considerations are complicated by whether it is derived as a first-order effect from loading or a second-order effect from instability. The current design for combined bending and torsion interaction has some limitations, including only considering the first yield in torsion and ignoring the cross-section slenderness in torsion. Previous work has derived a simple uniform equation to predict the bimoment capacity and two bimoment strength curves for local and distortional buckling under torsion only. This work is extended …


Elastic Properties Of The Non-Mixing Copper Donor Assisted Material In Friction Stir Welding Of Aluminum Alloys Using Nanoindentation, M. Ojha, A. H. Al-Allaq, Y. S. Mohammed, S. N. Bhukya, Z. Wu, A. A. Elmustafa Jan 2023

Elastic Properties Of The Non-Mixing Copper Donor Assisted Material In Friction Stir Welding Of Aluminum Alloys Using Nanoindentation, M. Ojha, A. H. Al-Allaq, Y. S. Mohammed, S. N. Bhukya, Z. Wu, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

Friction stir welding of high-strength materials such as steels is the impeded by the lack of the vast heat input needed to start the process. Contact friction is considered the most dominant source of heat generation for FSW steels which tends to cause severe wear conditions of the tool hear. To relieve the extreme wear conditions that occur on the tool heads because of FSW steels, we introduce the non-mixing Cu donor stir material to friction stir welding of aluminum alloys. The elastic properties of the Cu donor assisted friction stir welded aluminum alloys are measured using nanoindentation. The hardness …


Post-Weld Heat Treatment Effects On Microstructure, Crystal Structure, And Mechanical Properties Of Donor Stir–Assisted Friction Stir Welding Material Of Aa6061-T6 Alloy, Aiman H. Al-Allaq, Manish Ojha, Yousuf S. Mohammed, Srinivasa N. Bhukya, Zhenhua Wu, Abdelmageed A. Elmustafa Jan 2023

Post-Weld Heat Treatment Effects On Microstructure, Crystal Structure, And Mechanical Properties Of Donor Stir–Assisted Friction Stir Welding Material Of Aa6061-T6 Alloy, Aiman H. Al-Allaq, Manish Ojha, Yousuf S. Mohammed, Srinivasa N. Bhukya, Zhenhua Wu, Abdelmageed A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

Friction stir welding (FSW) technology combines heat input from friction and extreme plastic deformation to produce high-quality joints in aluminum and other alloy systems. This necessitates examining the final welded joint’s mechanical and structural properties. Post-weld heat-treated AA6061-T6 alloy that resulted from the application of a Cu donor stir–assisted (CDSA) friction stir welding (FSW) material was examined for crystal structure and mechanical properties. CDSA FSW samples were tested at a constant tool rotational speed of 1400 rpm and a welding translational speed of 1 mm/s. CDSA samples of 20% and 60% thickness of the AA6061-T6 base alloy were selected to …


Cold-Formed Steel Strength Predictions For Torsion, Yu Xia, Robert S. Glauz, Benjamin W. Schafer, Michael Seek, Hannah B. Blum Jan 2022

Cold-Formed Steel Strength Predictions For Torsion, Yu Xia, Robert S. Glauz, Benjamin W. Schafer, Michael Seek, Hannah B. Blum

Engineering Technology Faculty Publications

Locally slender open cross-section members are susceptible to significant twisting and high warping torsion stresses. Torsion considerations are complicated by whether it is derived as a first-order effect from loading or a second-order effect from instability. Previous direct torsion experiments on lipped channels have shown significant inelastic reserve in limited cases. The current design for combined bending and torsion interaction has some limitations, including only considering the first yield in torsion and ignoring the cross-section slenderness in torsion. A parametric study is conducted to predict the torsion capacity in locally slender cross-sections. Shell finite element models of lipped Cee and …


Exploring The Effects Of Chip Flexibility On The Behavior Of Standing Seam Diaphragms To Brace Cold Formed Steel Purlins, Michael W. Seek Jan 2022

Exploring The Effects Of Chip Flexibility On The Behavior Of Standing Seam Diaphragms To Brace Cold Formed Steel Purlins, Michael W. Seek

Engineering Technology Faculty Publications

Cold-formed steel C- and Z-shaped purlins in standing seam roof systems rely on the diaphragm action provided by the panels to restrain lateral movements and thus increase the load carrying capacity the purlins. The clip connection between the purlin and the panel has inherent and sometimes intentional flexibility designed to accommodate thermal deformations. The lateral deformation behavior of standing seam systems supported by Zees is highly nonlinear and this behavior is not well understood. The flexibility has major implications on the transfer of diaphragm forces throughout these systems and simplified models often grossly overpredict the demands on the diaphragm and …


Lateral-Torsional Instability And Biaxial Bending Of Imperfect Frp I-Beams, Jodi Knorowski, Stella B. Bondi, Zia Razzaq Jan 2022

Lateral-Torsional Instability And Biaxial Bending Of Imperfect Frp I-Beams, Jodi Knorowski, Stella B. Bondi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

This paper presents the outcome of a theoretical and experimental study of the behavior of Fiber Reinforced Polymer (FRP) I-beams exposed to lateral-torsional instability or when subjected to biaxial bending. Laboratory experiments involved the application of vertical and horizontal static loads to a 4 x 4 x ¼ in. I-beam with various lengths and the resulting deflections were recorded. Governing biaxial flexure and torsion differential equations were modified to account for the presence of initial imperfections and subsequently solved using a central finite-difference scheme. The theoretical predictions of the beam behavior were found to be in good agreement with what …


Lateral Bracing Of Beams Provided By Standing Seam Roof System: Concepts And Case Study, Gengrui Wei, Benjamin Schafer, Michael Seek, Matthew Eatherton Jan 2020

Lateral Bracing Of Beams Provided By Standing Seam Roof System: Concepts And Case Study, Gengrui Wei, Benjamin Schafer, Michael Seek, Matthew Eatherton

Engineering Technology Faculty Publications

The standing seam roof (SSR) system is the most commonly used roof system for metal buildings due to its superior durability, water tightness, and energy efficiency. In this type of system, SSR panels attach to Z-shaped or C-shaped purlins with clips, and the purlins are in turn connected to rafters (i.e. roof beams). For the design of metal building rafters against lateral torsional buckling, bottom flange braces provide torsional bracing to the rafter and the SSR system provides some lateral bracing. However, the degree to which the SSR system can restrain the rafter against lateral movement has not previously been …


Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic Jan 2019

Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic

Engineering Technology Faculty Publications

Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation …


Manufacturing Applications Of The One-Dimensional Cutting Stock Problem As A Team Project, Hüseyin Sarper, Nebojsa I. Jaksic Jan 2018

Manufacturing Applications Of The One-Dimensional Cutting Stock Problem As A Team Project, Hüseyin Sarper, Nebojsa I. Jaksic

Electrical & Computer Engineering Faculty Publications

This paper explains the beneficial and practical impact of operations research in two real manufacturing settings. Two manufacturing examples used in student projects were (1) cutting rails (80‘ or 40‘) to manufacture railroad frogs of many sizes and (2) cutting round metal rolls (12‘ to 20‘) to meet customer demands for various lengths of cuts. Student teams in Engineering of Manufacturing Processes and Operations Research courses wrote computer programs. The program first identified all possible patterns that can be cut out of a given stock length. Next, the program created a mathematical model (a text file) as an output. This …


Impact Of Clip Connection And Insulation Thickness On Bracing Of Purlins In Standing Seam Roof Systems, Michael W. Seek, Daniel Mclaughlin Jan 2017

Impact Of Clip Connection And Insulation Thickness On Bracing Of Purlins In Standing Seam Roof Systems, Michael W. Seek, Daniel Mclaughlin

Engineering Technology Faculty Publications

The flexural strength of purlins in standing seam roof systems is highly dependent upon the extent to which the sheathing provides lateral and torsional restraint. Typical models to predict the restraint provided by the sheathing assume that the plane of lateral resistance occurs at the top flange of the purlin. In reality, depending on the configuration of the clip and the amount of insulation located between the purlin and the clip, the plane of lateral resistance and corresponding center of rotation shifts above the top flange. This distance, referred to as the effective standoff, is important to evaluate the effectiveness …


Biaxial Bending And Lateral-Torsional Instability Of Imperfect Frp I-Beams Including Effects Of Retrofitting, Jodi Marie Knorowski Oct 2012

Biaxial Bending And Lateral-Torsional Instability Of Imperfect Frp I-Beams Including Effects Of Retrofitting, Jodi Marie Knorowski

Civil & Environmental Engineering Theses & Dissertations

This thesis presents the outcome of a theoretical and experimental study of the behavior of Fiber Reinforced Polymer (FRP) I-beams susceptible to lateral-torsional instability or when subjected to biaxial bending. Laboratory experiments involved application of vertical and horizontal static loads to a 4 x 4 x ¼ in. I-beam with various lengths, and the resulting displacement, twist, and strain were recorded. In the vertical direction, the beam was loaded from different reference load heights with respect to the shear center of the beam. The governing biaxial flexure and torsion differential equations were modified to account for the presence of initial …


Evolution Of The Band Structure Of Β-In2 S3−3x O3x Buffer Layer With Its Oxygen Content, N. Barreau, S. Marsillac, J. C. Bernède, L. Assmann May 2003

Evolution Of The Band Structure Of Β-In2 S3−3x O3x Buffer Layer With Its Oxygen Content, N. Barreau, S. Marsillac, J. C. Bernède, L. Assmann

Electrical & Computer Engineering Faculty Publications

The evolution of the band structure of β-In2 S3−3x O3x (BISO) thin films grown by physical vapor deposition, with composition x, is investigated using x-ray photoelectron spectroscopy. It is shown that the energy difference between the valence-band level and the Fermi level remains nearly constant as the optical band gap of the films increases. As a consequence, the difference between the conduction band level and the Fermi level increases as much as the optical band gap of the films. The calculation of the electronic affinity [ ] of the BISO thin films shows that it decreases linearly from 4.65 …


An Experimental And Analytical Investigation Of The Iosipescu Shear Test For Composite Materials, Barry Stuart Spigel Jul 1984

An Experimental And Analytical Investigation Of The Iosipescu Shear Test For Composite Materials, Barry Stuart Spigel

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical properties of composite materials under shear loading are difficult to determine. The Iosipescu Shear test, originally proposed for metals, has in recent years been applied to composites. It has the advantages of small specimen size, simple loading and a reasonably uniform shear stress in the test section.

The purpose of this work is to study the validity of the Iosipescu test method for measuring the shear modulus and shear strength of composites. Finite element analyses indicate that optimum specimen geometry and load locations depend upon the degree of orthotropy of the composite. Test results for a quasi-isotropic graphite/epoxy laminate …