Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Turbulence

Institution
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 91

Full-Text Articles in Engineering

Direct Numerical Simulation Of Turbulent Katabatic Slope Flows With An Immersed-Boundary Method, Clancy Umphrey, Ray Deleon, Inanc Senocak Sep 2017

Direct Numerical Simulation Of Turbulent Katabatic Slope Flows With An Immersed-Boundary Method, Clancy Umphrey, Ray Deleon, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

We investigate a Cartesian-mesh immersed-boundary formulation within an incompressible flow solver to simulate laminar and turbulent katabatic slope flows. As a proof-of-concept study, we consider four different immersed-boundary reconstruction schemes for imposing a Neumann-type boundary condition on the buoyancy field. Prandtl’s laminar solution is used to demonstrate the second-order accuracy of the numerical solutions globally. Direct numerical simulation of a turbulent katabatic flow is then performed to investigate the applicability of the proposed schemes in the turbulent regime by analyzing both first- and second-order statistics of turbulence. First-order statistics show that turbulent katabatic flow simulations are noticeably sensitive to the …


Direct Numerical Simulation Of Turbulent Katabatic Slope Flows With An Immersed-Boundary Method, Clancy Umphrey, Ray Deleon, Inanc Senocak Jun 2017

Direct Numerical Simulation Of Turbulent Katabatic Slope Flows With An Immersed-Boundary Method, Clancy Umphrey, Ray Deleon, Inanc Senocak

Inanc Senocak

We investigate a Cartesian-mesh immersed-boundary formulation within an incompressible flow solver to simulate laminar and turbulent katabatic slope flows. As a proof-of-concept study, we consider four different immersed-boundary reconstruction schemes for imposing a Neumann-type boundary condition on the buoyancy field. Prandtl’s laminar solution is used to demonstrate the second-order accuracy of the numerical solutions globally. Direct numerical simulation of a turbulent katabatic flow is then performed to investigate the applicability of the proposed schemes in the turbulent regime by analyzing both first- and second-order statistics of turbulence. First-order statistics show that turbulent katabatic flow simulations are noticeably sensitive to the …


Investigation Of A Novel Turbulence Model And Using Leading-Edge Slots For Improving The Aerodynamic Performance Of Airfoils And Wind Turbines, Saman Beyhaghi May 2017

Investigation Of A Novel Turbulence Model And Using Leading-Edge Slots For Improving The Aerodynamic Performance Of Airfoils And Wind Turbines, Saman Beyhaghi

Theses and Dissertations

Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. …


Turbulence Analysis For The Improvement Of Internal Combustion Engine Efficiency, James R. Macdonald, Claudia Fajardo-Hansford Apr 2017

Turbulence Analysis For The Improvement Of Internal Combustion Engine Efficiency, James R. Macdonald, Claudia Fajardo-Hansford

Research and Creative Activities Poster Day

Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and operating strategies to improve engine efficiency. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), which have been extensively researched. Motivated by this need, this poster presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the …


An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey Mar 2017

An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Particle image velocimetry measurements were conducted for a wing-tip vortex decaying in free-stream turbulence. The vortex exhibited stochastic collapse with free-stream turbulence present, with the breakdown initiating earlier for higher levels of turbulence. An increased rate of decay of the vortex tangential velocity was also observed, increasing with increasing free-stream turbulence. The decay of the vortex tangential velocity without the free-stream turbulence was well represented by viscous diffusion, resulting in an increase in the core radius and decrease in the peak tangential velocity. With the addition of free-stream turbulence, the rate of decay of the peak tangential velocity of the …


Effects Of Turbulence On The Separating-Reattaching Flow Above Surface-Mounted, Three-Dimensional Bluff Bodies, Abul Fahad Akon Mar 2017

Effects Of Turbulence On The Separating-Reattaching Flow Above Surface-Mounted, Three-Dimensional Bluff Bodies, Abul Fahad Akon

Electronic Thesis and Dissertation Repository

Investigations of separated and reattaching flows over three-dimensional bluff bodies in turbulent boundary layers are important because of the large aerodynamic loads that these flows cause. For example, roofs of low-rise buildings are vulnerable to this kind of wind loading. Turbulence in the upstream flow affects the pressure distributions and the mean size of separation bubbles formed on bluff body surfaces. Whereas a number of studies have focussed on two-dimensional separation bubbles and surface pressures, a comprehensive understanding of the surface pressures and the separating-reattaching flows in relation to the turbulence in the incident boundary layers for surface-mounted, three-dimensional bluff …


Piv Analysis Of Wake Structure Of Real Elephant Seal Whiskers, Joseph Antun Bunjevac Jan 2017

Piv Analysis Of Wake Structure Of Real Elephant Seal Whiskers, Joseph Antun Bunjevac

ETD Archive

Seals are able to accurately detect minute disturbances in the ambient flow
environment using their whiskers, which is attributed to the exceptional capability of
their whiskers to suppress vortex-induced vibrations in the wake. To explore potential applications for designing smart flow devices, such as high-sensitivity underwater
flow sensors and drag reduction components, researchers have studied how the role
of some key parameters of whisker-like morphology affect the wake structure. Due to
the naturally presented variation in size and curvature along the length of whiskers,
it is not well understood how a real whisker changes the surrounding flow and the
vortex …


Data-Driven Adaptive Reynolds-Averaged Navier-Stokes K - Ω Models For Turbulent Flow-Field Simulations, Zhiyong Li Jan 2017

Data-Driven Adaptive Reynolds-Averaged Navier-Stokes K - Ω Models For Turbulent Flow-Field Simulations, Zhiyong Li

Theses and Dissertations--Mechanical Engineering

The data-driven adaptive algorithms are explored as a means of increasing the accuracy of Reynolds-averaged turbulence models. This dissertation presents two new data-driven adaptive computational models for simulating turbulent flow, where partial-but-incomplete measurement data is available. These models automatically adjust (i.e., adapts) the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k-ω turbulence equations to improve agreement between the simulated flow and a set of prescribed measurement data.

The first approach is the data-driven adaptive RANS k-ω (D-DARK) model. It is validated with three canonical flow geometries: pipe flow, the backward-facing step, and flow around an airfoil. For all 3 test …


Best Practices For Volume Flow Rate Measurements Using Piv At The Exit Of A Turbulent Planar Jet, Rick Cressall Dec 2016

Best Practices For Volume Flow Rate Measurements Using Piv At The Exit Of A Turbulent Planar Jet, Rick Cressall

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Particle image velocimetry (PIV) is used to make volume-flow-rate measurements at the exit of a turbulent, planar nozzle. The objective of this report is to assess a range of data acquisition and processing parameters. Data is acquired for volume flow rates of Reynolds numbers between 10,000 and 100,000 for both two-component (2C) and stereo PIV. The parameters are systematically changed one at a time and evaluated using differences in uncertainty, calculation time, and volume- flow-rate deviation. Data acquisition parameters follow the trends of previous work. A multitude of processing parameters were varied for several PIV processing methods. Recommendations for each …


Computational Fluid Dynamic Modeling Of Natural Convection In Vertically Heated Rods, Mahesh Surendran May 2016

Computational Fluid Dynamic Modeling Of Natural Convection In Vertically Heated Rods, Mahesh Surendran

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Natural convection is a phenomenon that occurs in a wide range of applications such as cooling towers, air conditioners, and power plants. Natural convection may be used in decay heat removal systems such as spent fuel casks, where the higher reliability inherent of natural convection is more desirable than forced convection. Passive systems, such as natural convection, may provide better safety, and hence have received much attention recently. Cooling of spent fuel rods is conventionally done using water as the coolant. However, it involves contaminating the water with radiation from the fuel rods. Contamination becomes dangerous and difficult for humans …


Development Of An Unmanned Aerial Vehicle For Atmospheric Turbulence Measurement, Brandon M. Witte Jan 2016

Development Of An Unmanned Aerial Vehicle For Atmospheric Turbulence Measurement, Brandon M. Witte

Theses and Dissertations--Mechanical Engineering

An unmanned aerial vehicle was developed to study turbulence in the atmospheric boundary layer. The development of the aircraft, BLUECAT5, and instrumentation package culminated in a series of flight experiments conducted in two different locations near Stillwater, Oklahoma, USA. The flight experiments employed the use of two of the unmanned aerial vehicles flying simultaneously, each containing a five-hole pressure probe as part of a turbulence-measuring instrumentation package. A total of 18 flights were completed with the objective to measure atmospheric properties at five altitudes between 20 and 120 meters. Multiple flights were flown over two days in which the effects …


Experimental Validation Data For Cfd Of Forced Convection On A Vertical Flat Plate, Jeff R. Harris, Blake W. Lance, Barton L. Smith Jan 2016

Experimental Validation Data For Cfd Of Forced Convection On A Vertical Flat Plate, Jeff R. Harris, Blake W. Lance, Barton L. Smith

Mechanical and Aerospace Engineering Faculty Publications

A CFD validation data set for turbulent forced convection on a vertical plate is presented. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions and system response quantities. All important inflow quantities for RANS CFD are also measured. Data are acquired at two heating conditions and cover the range 40;000 < Rex < 300;000, 357 < Red2 < 813 and 0:02 < Gr/Re2 < 0:232. The data and uncertainties are contained in files in the supplemental material


Multiple Scales Of Beach Morphodynamic Processes: Measurements And Modelling, Jun Cheng Nov 2015

Multiple Scales Of Beach Morphodynamic Processes: Measurements And Modelling, Jun Cheng

USF Tampa Graduate Theses and Dissertations

Multiple scales of beach morphodynamic processes ranging from those of wave-breaking induced turbulence, individual wave, storm, seasonal, to inter-annual are examined in this dissertation based on both laboratory and field data. These processes were simulated using process-based numerical models and data-driven models.

At a microscale, separating turbulence from orbital motion under breaking waves in the surf zone is essential to understanding wave-energy dissipation. Velocity data under monochromatic and random waves in the large-scale sediment transport facility (LSTF) were analyzed. Moving averaging provides a simple method for extracting turbulence from velocity measurements under random breaking waves collected at a reasonably high …


Near-Wall Measurements For A Turbulent Impinging Slot Jet System, Jiang Zhe, Vijay Modi Apr 2015

Near-Wall Measurements For A Turbulent Impinging Slot Jet System, Jiang Zhe, Vijay Modi

Dr. Jiang Zhe

The velocity field in the vicinity of a target surface with a turbulent slot jet impinging normally on it is examined. The impingement region is confined by means of a confinement plate that is flush with the slot and parallel to the impingement plate. The distance H of the impingement wall from the slot is varied from 2 to 9.2 slot widths. Jet Reynolds numbers (based on slot width B) of 10,000–30,000 are considered. Mean velocity and root mean square velocity measurements are carried out using hot-wire anemometry. A boundary layer probe is utilized in order to obtain measurements at …


Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain Jan 2015

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain

Open Access Theses & Dissertations

In order to design next generation gas turbine combustor and rocket engines, a systematic study of flame structure at high intensity turbulent flow is necessary. The fundamental study of turbulent premixed combustion has been a major research concern for decades. The work is focused on the design and development of a high intensity turbulent combustion system which can be operated at compressible (0.3 < M < 0.5), preheated (T0=500K) and premixed conditions in order to investigate the 'Thickened Flame' regime. An air-methane mixture has been used as the fuel for this study. An optically accessible backward-facing step stabilized combustor has been designed for a maximum operating pressure of 6 bar. A grid has been introduced with different blockage ratios (BR = 54%, 61% & 67%) in order to generate turbulence inside the combustor for the experiment. Optical access is provided via quartz windows on three sides of the combustion chamber. Finite Element Analysis (FEA) is done in order to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section was designed to use commercially available in-line heaters. Separate cooling subsystems have been designed for chamber cooling and exhaust cooling. The LabVIEW software interface has been selected as the control mechanism for the experimental setup. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The primary understanding of the flow field inside the combustor was achieved through the use of Detached Eddy Simulation (DES) by using commercially available software package ANSYS FLUENT. Preliminary validation is done by 10 kHz TR-PIV technique. Both qualitative and quantitative analysis have been done for CFD and experiment. Major flow parameters such as average velocity, fluctuation of velocity, kinetic energy, and turbulent intensity have been calculated for two distinct Reynolds number (Re = 815 & 3500). PIV results are compared with CFD results which show significant agreement with each other.


Single-Phase Turbulent Enthalpy Transport, Bradley J. Shields Nov 2014

Single-Phase Turbulent Enthalpy Transport, Bradley J. Shields

Masters Theses

Vapor generation is central to the flow dynamics within fuel injector nozzles. Because the degree of atomization affects engine emissions and spray characteristics, quantification of phase change within diesel fuel injectors is a topic of design interest. Within the nozzle, the large pressure gradient between the upstream and downstream plena induce large velocities, creating separation and further pressure drop at the inlet corner. When local pressure in the throat drops below the fluid vapor pressure, phase change can occur with sufficient time. At the elevated temperatures present in diesel engines, this process can be dependent upon the degree of superheat, …


Simulation And Modeling Of The Decay Of Anisotropic Turbulence, Christopher J. Zusi Aug 2014

Simulation And Modeling Of The Decay Of Anisotropic Turbulence, Christopher J. Zusi

Doctoral Dissertations

The influence of turbulence structure, parameterized by two point correlations, on the return-to-isotropy process is examined under controlled conditions. In order to determine the influence of structure, direct numerical simulations (DNS) of return-to-isotropy in homogeneous, anisotropic turbulence is performed on meshes of 5123 and 512x512x1024. Isotropic turbulence is generated by mechanical stirring (as in a wind tunnel). Anisotropy is then generated by one of four fundamentally different mean strains, axisymmetric expansion and contraction, plane strain, and pure rotation. Each strain produces very different structure within the turbulence. The influence on the return-to-isotropy process of the initial structure (parameterized by …


Simulating High Flux Isotope Reactor Core Thermal-Hydraulics Via Interdimensional Model Coupling, Adam Ross Travis May 2014

Simulating High Flux Isotope Reactor Core Thermal-Hydraulics Via Interdimensional Model Coupling, Adam Ross Travis

Masters Theses

A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains—a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a two-dimensional slice oriented perpendicular to the fuel plate’s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in …


Experimental And Numerical Study Of The Air Distribution In An Airliner Cabin, Wei Liu Apr 2014

Experimental And Numerical Study Of The Air Distribution In An Airliner Cabin, Wei Liu

Open Access Theses

Nowadays, more people, including those with impaired health or who are otherwise potentially sensitive to the cabin environment, are traveling by air than ever before. The flying public demands a higher comfort level and a cleaner environment because they encounter a combination of environmental factors including low humidity, low air pressure, and sometimes, exposure to air contaminants such as ozone, carbon monoxide, various organic chemicals, and biological agents. Moreover, international air travel has increased the potential risks associated with airborne disease transmission and the release, whether accidentally or intentionally, of noxious substances during flight. Many studies suggest that the risk …


There Can Be Turbulence In Microfluidics At Low Reynolds Number, Guiren Wang, F. Yang, Wei Zhao Jan 2014

There Can Be Turbulence In Microfluidics At Low Reynolds Number, Guiren Wang, F. Yang, Wei Zhao

Faculty Publications

Turbulence is commonly viewed as a type of macroflow, where the Reynolds number (Re) has to be sufficiently high. In microfluidics, when Re is below or on the order of 1 and fast mixing is required, so far only chaotic flow has been reported to enhance mixing based on previous publications since turbulence is believed not to be possible to generate in such a low Re microflow. There is even a lack of velocimeter that can measure turbulence in microchannels. In this work, we report a direct observation of the existence of turbulence in microfluidics with Re on the order …


Channel Flow Behaviour During Mixed Convection At Low Reynolds Numbers, Ahmed Elatar Sep 2013

Channel Flow Behaviour During Mixed Convection At Low Reynolds Numbers, Ahmed Elatar

Electronic Thesis and Dissertation Repository

The effect of mixed convection on low Reynolds numbers flow inside a horizontal square channel heated from below have been investigated experimentally. The channel flow rate ranged from 0.0210 kg/s to 0.0525 kg/s which correspond to Reynolds numbers between 300 and 750 in the absence of heating. The channel bottom surface temperature was controlled and varied from 30 ºC to 55 ºC (Grashof number ranged between 6.37×106 and 3.86×107). Planer Particle Image Velocimetry (PIV) technique was used to measure two-dimensional velocity fields in the channel mid-vertical plane and two horizontal planes close to the bottom heated wall. …


Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite Jul 2013

Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite

Master's Theses

An experimental investigation of the use low-cost microphones for unsteady total pressure measurement to detect transition from laminar to turbulent boundary layer flow has been conducted. Two small electret condenser microphones, the Knowles FG-23629 and the FG-23742, were used to measure the pressure fluctuations and considered for possible integration with an autonomous boundary layer measurement system. Procedures to determine the microphones’ maximum sound pressure levels and frequency response using an acoustic source provided by a speaker and a reference microphone. These studies showed that both microphones possess a very flat frequency response and that the max SPL of the FG-23629 …


Verification And Validation Of The Spalart-Allmaras Turbulence Model For Strand Grids, Oisin Tong May 2013

Verification And Validation Of The Spalart-Allmaras Turbulence Model For Strand Grids, Oisin Tong

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The strand-Cartesian grid approach is a unique method of generating and computing fluid dynamic simulations. The strand-Cartesian approach provides highly desirable qualities of fully-automatic grid generation and high-order accuracy. This thesis focuses on the implementation of the Spalart-Allmaras turbulence model to the strand-Cartesian grid framework. Verification and validation is required to ensure correct implementation of the turbulence model.

Mathematical code verification is used to ensure correct implementation of new algorithms within the code framework. The Spalart-Allmaras model is verified with the Method of Manufactured Solutions (MMS). MMS shows second-order convergence, which implies that the new algorithms are correctly implemented.

Validation …


The Determination Of Drag And Lift Forces Of A Rigid Beam Located Within A Turbulent Boindary Layer By Means Of Large Eddy Simulation Modeling, Santiago Helman Jan 2013

The Determination Of Drag And Lift Forces Of A Rigid Beam Located Within A Turbulent Boindary Layer By Means Of Large Eddy Simulation Modeling, Santiago Helman

Dissertations and Theses

"Recent studies such as those conducted by Akaydin, Elvin and Andreopoulos in [1] have described and quantified the electrical power that can be extracted from a moving flow by the implementation of energy harvesters. In such study, a flexible cantilevered beam was fitted with a cylindrical prism at the free end and placed within a uniform flow field. Due to the vortex shedding generated by the prism (e.g. Von Karman vortices) the beam was found to oscillate about the undisturbed position. The beam in question was then outfitted with a piezoelectric material in order to translate the transient strain energy …


Experimental Characterization Of Roughness And Flow Injection Effects In A High Reynolds Number Turbulent Channel, Mark A. Miller Jan 2013

Experimental Characterization Of Roughness And Flow Injection Effects In A High Reynolds Number Turbulent Channel, Mark A. Miller

Theses and Dissertations--Mechanical Engineering

A turbulent channel flow was used to study the scaling of the combined effects of roughness and flow injection on the mean flow and turbulence statistics of turbulent plane Poiseuille flow. It was found that the additional momentum injected through the rough surface acted primarily to enhance the roughness effects and, with respect to the mean flow, blowing produced similar mean flow effects as increasing the roughness height. This was not found to hold for the turbulence statistics, as a departure from Townsend’s hypothesis was seen. Instead, the resulting outer-scaled streamwise Reynolds stress for cases with roughness and blowing deviated …


Electrokinetic Mixing And Separation In Microfluidic Systems, Fang Yang Jan 2013

Electrokinetic Mixing And Separation In Microfluidic Systems, Fang Yang

Theses and Dissertations

Electrokinetics involves the study of liquid or particle motion under the action of an electric field; it includes electroosmosis, electrophoresis, dielectrophoresis, and electrowetting, etc. The applications of electrokinetics in the development of microfluidic devices have been widely attractive in the past decade. Electrokinetic devices generally require no external mechanical moving parts and can be made portable by replacing the power supply by small battery. Therefore, electrokinetic based microfluidic systems can serve as a viable tool in creating a lab-on-a-chip (LOC) for use in biological and chemical assays. Here we present our works of electrokenitic based mixing and separation in microfluidics …


Large Eddy Simulation And Analysis Of Shear Flows In Complex Geometries, Prasad Mohanrao Kalghatgi Jan 2013

Large Eddy Simulation And Analysis Of Shear Flows In Complex Geometries, Prasad Mohanrao Kalghatgi

LSU Doctoral Dissertations

In the present work, large eddy simulation is used to numerically investigate two types of shear flows in complex geometries, (i) a novel momentum driven countercurrent shear flow in dump geometry and (ii) a film cooling flow (inclined jet in crossflow). Verification of subgrid scale model is done through comparisons with measurements for a turbulent flow over back step, present cases of counter current shear and film cooling flow. In the first part, a three dimensional stability analysis is conducted for countercurrent shear flow using Dynamic mode decomposition and spectral analysis. Kelvin-Helmholtz is identified as primary instability mechanism and observed …


Methods For Identifying Acoustic Emissions From The Front Face Of A Small Piezoelectric Blower, Brad K. Solomon Dec 2012

Methods For Identifying Acoustic Emissions From The Front Face Of A Small Piezoelectric Blower, Brad K. Solomon

Theses and Dissertations

This thesis focuses on identifying acoustic noise generating components in piezoelectric blowers through transverse velocity measurements and the development of a numerical fluid model. Piezoelectric ceramics have proven useful for many industries and areas of research involving: high precision actuators, noise control, ultrasonic devices, and many other areas. As of late, a unique adaptation of piezoelectric ceramics is surfacing in the area of pumping and cooling. Air pumps that use these ceramics replace the traditional electric motor, resulting in lower power consumption, less moving parts, constant pressure gradients, lower overall weight, and a low profile. The current drawback of this …


A Study On Small Scale Intermittency Using Direct Numerical Simulation Of Turbulence, Saba Almalkie May 2012

A Study On Small Scale Intermittency Using Direct Numerical Simulation Of Turbulence, Saba Almalkie

Open Access Dissertations

Theory of turbulence at small scales plays a fundamental role in modeling turbulence and in retrieving information from physical measurements of turbulent flows. A systematic methodology based on direct numerical simulations of turbulent flows is developed to investigate universality of small scale turbulence. Understanding characteristics of the small scale intermittency in turbulent flows and the accuracy of the models, measurements, and theories in predicting it are the main objectives. The research is designed to address two central questions; 1) possible effects of large scale anisotropies on the small scale turbulence and 2) potential biases in characterizing small scale turbulence due …


The Oriented-Eddy Collision Model, Michael Bernard Martell Jr. May 2012

The Oriented-Eddy Collision Model, Michael Bernard Martell Jr.

Open Access Dissertations

The physical and mathematical foundations of the Oriented-Eddy Collision turbulence model are provided through a discussion of the Reynolds averaged Navier-Stokes (RANS) equations, probability density functions (PDF), PDF collision models, Reynolds stress transport models (RSTM), and two-point correlations. Behavior of the Oriented-Eddy Collision turbulence model near solid boundaries is examined in depth. The Oriented-Eddy Collision turbulence model treats turbulence in a novel way: the average behavior of a turbulent flow can be modeled as a collection of interacting fluid particles, or eddies, which have inherent orientation. The model is cast in the form of a collection of Reynolds stress transport …