Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Robot

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 37

Full-Text Articles in Engineering

Summonable Construction Delivery Robot, Kevin M. Lewis May 2024

Summonable Construction Delivery Robot, Kevin M. Lewis

Honors Capstones

In many different construction industries, there is a need for tools, parts, and other necessary items to be transported quickly and efficiently over various types of terrain. Human resources have often been used to address these needs, which can become very time and cost inefficient over long periods. The design proposal here is aimed at addressing this need by developing an autonomous outdoor mobile robot based on a quadrupedal robot design. This approach differs by incorporating a wheeled and quadrupedal hybrid actuation system that provides terrain negotiation and speed at the appropriate times. The team uses Robot Operating System (ROS) …


Garbage Float, Gabor Papp, Max Woolverton, Scott Ulatowski, Daniel Ross, Nicholas Gayle, Bryan Merchan-Aragon, Noah Yco, Nicholas Fawcett, Jared Wright, Abdulaziz Salman G Alshahrani, Andrew Mcquire Apr 2024

Garbage Float, Gabor Papp, Max Woolverton, Scott Ulatowski, Daniel Ross, Nicholas Gayle, Bryan Merchan-Aragon, Noah Yco, Nicholas Fawcett, Jared Wright, Abdulaziz Salman G Alshahrani, Andrew Mcquire

Mechanical and Civil Engineering Student Publications

Trash pileup in our waters is an increasing problem. Removing floating plastics and debris from our ecosystem would reduce mortality rate of marine animals. Solutions for this already exist but most of them are proprietary and expensive. Therefore, an autonomous, publicly available and cheap alternative was developed to skim and clean the water surface from garbage.


Vision Controlled Autonomous Stakebot For Driving Stakes And Its Digital-Twin, Corey Lee Leydig Apr 2023

Vision Controlled Autonomous Stakebot For Driving Stakes And Its Digital-Twin, Corey Lee Leydig

Theses and Dissertations

In this thesis a novel vision-based AI driven autonomous ‘StakeBot’ is proposed to serve the agricultural 4.0 industries of the future. In recent years supply, demand and production of vegetables that are harvested from plants with weak stems like bell pepper, tomato, eggplant has been significantly up by several fold. With growing demand and new green-house establishments across the country production of vegetables will require a tremendous number of labors which will be hard to supply soon. To overcome the issues in addition to the labor shortages, automation through robotics will be the only viable solution. Plants like bell peppers …


8 Dof Quadrupedal Hopping Robot, Clayton T. Elwell, John Bennett, Tyler Mccue, Daniel Munic Jun 2022

8 Dof Quadrupedal Hopping Robot, Clayton T. Elwell, John Bennett, Tyler Mccue, Daniel Munic

Mechanical Engineering

The goal of our senior project was to fabricate an eight degree of freedom (DOF) prototypical quadrupedal robot, develop a controller than commands the quadruped to repeatedly jump 10 cm in the air, and fabricate a modular test stand to safely deploy our controller on the quadruped. The creation of a functional quadruped will bring attention to Dr. Siyuan Xing and Charlie Refvem’s research group, Cal Poly Legged Robots, and will give future Cal Poly undergraduate and graduate students a learning tool to explore dynamic control of biomimetic robotic systems.

Over the course of our senior project, we successfully manufactured …


Modeling And Control Of A Planar Bounding Quadrupedal Robot, Patrick John Ward Jun 2022

Modeling And Control Of A Planar Bounding Quadrupedal Robot, Patrick John Ward

Master's Theses

Legged robots have the potential to be a valuable technology that provides agile and adaptive locomotion over complex terrain. To realize legged locomotion's full abilities a control design must consider the nonlinear piecewise dynamics of the systems. This paper aims to develop a controller for the planar bounding of a quadrupedal robot.

The bounding of the quadruped robot is characterized by a simplified hybrid model that consists of two subsystems for stance and flight phases and the switching laws between the two states. An additional model, the Multibody model, with fewer simplifications, is used concurrently to best approximate real-world behavior. …


Autonomous Navigator Mobile Robot Upgrade, David Sansoucy Apr 2022

Autonomous Navigator Mobile Robot Upgrade, David Sansoucy

Thinking Matters Symposium

The mobile robot platform has been developed over the course of 10 years at USM. In Spring 2020, Belle-Isle and Werner updated the previous framework by rewriting the software to use the ROS framework running on an on-board Raspberry Pi 3. They also implemented navigation using an A* motion planning algorithm and image processing. In Summer 2021, Ames incorporated Lidar and Kinect sensors onto the robot to improve its real-time navigation capabilities. He also made improvements to the power distribution systems. This project aimed to build on the ROS frameworks developed by the previous 2 teams with the main goal …


Development Of An Interactive Robot For Overground Physical Human-Robot Interaction, Sambad Regmi Jan 2022

Development Of An Interactive Robot For Overground Physical Human-Robot Interaction, Sambad Regmi

Doctoral Dissertations

"The overground interactive robots are potentially beneficial for humans in various areas, such as overground rehabilitation therapies and robotic interactive assistance. However, it is unclear what the expectations and challenges are for a robot to be physically interactive with a human during overground tasks, such as a robot helping an older adult walk. To develop such a robot, one must first build a clear understanding of how the human motor intent is communicated when interacting with another agent. Specifically, how do humans understand the leader’s intention when being led?

Based on previous works, we hypothesized that humans modulate their arm …


Chemical Clean Automated Loader, Jordyn Bryner Jan 2022

Chemical Clean Automated Loader, Jordyn Bryner

Williams Honors College, Honors Research Projects

TTM Technologies (TTM) is a global printed circuit board (PCB) manufacturer. The work described in this report was completed in the TTM North Jackson, Ohio location. This plant focuses primarily on the manufacturing of rigid and rigid-flex PCBs for the aerospace and defense industry. TTM North Jackson has an ongoing labor dependency issue due to the shortage of workers the nation is facing. To solve this problem, TTM has focused the efforts of their new engineers and interns on automating processes that are labor dependent. The goal is to provide design guidance to be used later by TTM to automate …


Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell May 2021

Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell

Mechanical Engineering Undergraduate Honors Theses

This thesis presents the concept of using a two wheeled robot on the moon and briefly explores the requirements for successful long term operation in a lunar environment. The mathematical model for the motion of a robot with two fixed wheels on a differential drive with in a global reference frame. The robot is assumed to be balancing a platform so the mathematical model to balance the platform with wheel motors is also developed and briefly evaluated.


Implementation Of An Autonomous Guided Vehicle (Agv), Allen St. Myers, Alan Miller Jan 2021

Implementation Of An Autonomous Guided Vehicle (Agv), Allen St. Myers, Alan Miller

Williams Honors College, Honors Research Projects

This report thoroughly represents a proposal to AAM Metal Forming Minerva for the implementation of an AGV (Autonomous Guided Vehicle) Unit. Our recommendations are made with consideration to existing manufacturing processes and demonstrate how using an AGV would be a net positive investment for the company. By first examining the current operating costs, a three-tiered proposal is tailored based on increasing investment cost. Each tier increase encompasses the previous tiers’ proposed improvements while also growing in complexity and investment cost. The results of our research indicate that our Tier 2 proposal will provide the most benefit to our facility now …


Design And Development Of A 7 Dof Robot With Ergonomic Shoulder For Upper Limb Rehabilitation, Md Rasedul Islam Dec 2020

Design And Development Of A 7 Dof Robot With Ergonomic Shoulder For Upper Limb Rehabilitation, Md Rasedul Islam

Theses and Dissertations

With the increase of stroke patients, the number of upper limb dysfunction is increasing day by day. Robotic intervention in upper limb (UL) rehabilitation of post-stroke patients has gained much traction in recent years. Though many research groups have developed exoskeletons, existing exoskeletons have limitations in both hardware design and control approaches. In most cases, rehabilitative robotic devices have not considered the movement of the shoulder joint’s center (center of glenohumeral joint); however, this movement leads to misalignment between human joints and robot joints, which is undesirable in any circumstances. To ensure better human-robot interaction (HRI), allowing mobility of shoulder …


Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara Jun 2020

Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara

Mechanical Engineering

The goal of this document is to clearly define the problem parameters and project objectives and to clearly describe the design process, planned final design, and manufacturing and testing procedures for the senior design project of Team 26: SAVER -- the Surface Autonomous Vehicle for Emergency Rescue. This is both for the purpose of project planning and for clear communication between all parties involved in the project.

The objective of the SAVER project is to develop a proof of concept for an autonomous maritime search and rescue vehicle for aiding in man-overboard missions. To accomplish this goal, a list of …


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning …


Tangle-Free Exploration With A Tethered Mobile Robot, Danylo Shapovalov, Guilherme Pereira Jan 2020

Tangle-Free Exploration With A Tethered Mobile Robot, Danylo Shapovalov, Guilherme Pereira

Faculty & Staff Scholarship

Exploration and remote sensing with mobile robots is a well known field of research, but current solutions cannot be directly applied for tethered robots. In some applications, tethers may be very important to provide power or allow communication with the robot. This paper presents an exploration algorithm that guarantees complete exploration of arbitrary environments within the length constraint of the tether, while keeping the tether tangle-free at all times. While we also propose a generalized algorithm that can be used with several exploration strategies, our implementation uses a modified frontier-based exploration approach, where the robot chooses its next goal in …


Pick-And-Place Robot For The 2019 Asme Student Design Competition, Riniah A. Foor, Megan Schmit, Aaron Urban, Jeanetta Davidsaver, Daniel Mugongo Jan 2019

Pick-And-Place Robot For The 2019 Asme Student Design Competition, Riniah A. Foor, Megan Schmit, Aaron Urban, Jeanetta Davidsaver, Daniel Mugongo

Williams Honors College, Honors Research Projects

This project was undertaken as an opportunity to participate in a holistic experience of designing, building, and competing as an engineering design team. In the ASME Student Design Competition, undergraduate students are able to experientially learn the process of design inception, manufacture, and product performance in addition to the development of critical project management skills. This is done through a creative design challenge to build a device capable of accomplishing a “pick-and-place” task in a fast and efficient manner.


End Effector For Robotic Strawberry Picker Final Design Review, Marshall Cuffe, Cory Frederickson, Jimmy Jeffery Dec 2018

End Effector For Robotic Strawberry Picker Final Design Review, Marshall Cuffe, Cory Frederickson, Jimmy Jeffery

Mechanical Engineering

In this report, we have outlined the background of the problem and need for a solution to an automated form of strawberry harvesting. The report includes our research findings, defines the scope and objectives for this project, and documents our complete design process. Also included is our final, completed prototype, and a description of the manufacturing, design verification and testing process. Also included is our conclusions and recommendations for further improvement on future iterations.


Locomotion Of A Cylindrical Rolling Robot With A Shape Changing Outer Surface, Michael G. Puopolo, Jamey D. Jacob, Emilio Gabino Sep 2018

Locomotion Of A Cylindrical Rolling Robot With A Shape Changing Outer Surface, Michael G. Puopolo, Jamey D. Jacob, Emilio Gabino

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A cylindrical rolling robot is developed that generates roll torque by changing the shape of its flexible, elliptical outer surface whenever one of four elliptical axes rotates past an inclination called trigger angle. The robot is equipped with a sensing/control system by which it measures angular position and angular velocity, and computes error with respect to a desired step angular velocity profile. When shape change is triggered, the newly assumed shape of the outer surface is determined according to the computed error. A series of trial rolls is conducted using various trigger angles, and energy consumed by the actuation motor …


Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt Jun 2018

Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt

Honors Theses

A tensegrity is a structure composed of a series of rigid members connected in static equilibrium by tensile elements. A vibrating tensegrity robot is an underactuated system in which a set of its struts are vibrated at certain frequency combinations to achieve various locomotive gaits. Evolutionary robotics research lead by Professor John Rieffel focuses on exploiting the complex dynamics of tensegrity structures to control locomotion in vibrating tensegrity robots by finding desired gaits using genetic algorithms. A current hypothesis of interest is that the optimal locomotive gaits of a vibrating tensegrity exist at its resonant frequencies.

In order to observe …


Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett Dec 2017

Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett

Mechanical Engineering

This paper describes the design process from ideation to test validation for a singular robotic joint to be configured into a myriad of system level of robots.


Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson Oct 2017

Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson

Purdue Journal of Service-Learning and International Engagement

The courses of Tech120, CGT110, and ENGT 180/181 and Red Gold at Purdue collaborated to design a robot that would plant and water a garden for a local community charter school. The students centered the project on the users’ needs for fresh food, nutrition education, and early exposure to STEM for children. The school, Anderson Preparatory Academy (APA), is comprised of many children who come from low-income families and are in the free or reduced lunch program. Inspired from “Farm Bot,” a similar system that allows for almost hands-free gardening, the “Boiler Bot” is designed to be scalable so children …


Flexible-Continuum Robot For Bladder Tissue Diagnostics, Samson Abimbola Adejokun Aug 2017

Flexible-Continuum Robot For Bladder Tissue Diagnostics, Samson Abimbola Adejokun

Mechanical and Aerospace Engineering Theses

The aim of this thesis is to investigate and develop a robotic system capable of a transurethral palpation of any targeted area on the bladder interior wall tissue to determine the biomechanical properties of the tissue considering the urinary tract geometric constraints and to demonstrate the motion kinematics of such robot to achieve a desired robot pose normal to any localized region throughout the bladder workspace. Current technologies have, to varied degree of success, provide approximate, global diagnostics information to bladder tissue elasticity. However, no direct access qualitative methods to measure the bladder tissue properties are known. For this reason, …


The Design, Manufacture, And Testing Of A Novel Adhesion System For A Climbing Vehicle, Michael William Schier Jun 2017

The Design, Manufacture, And Testing Of A Novel Adhesion System For A Climbing Vehicle, Michael William Schier

Master's Theses

We present the design and fabrication of a prototype wall-climbing vehicle employing a unique combined locomotion and adhesion system in which the adhesive vacuum is transmitted through moving, perforated treads. Implementing the adhesion/drive system involved a broad range of design challenges, including: developing reliable sealing of sliding and static interfaces, understanding the frictional interactions between the drive treads and various vehicle components and surfaces on which they ride, as well as designing for lightness, manufacturability, and adjustability. The clean sheet design presented in this thesis was taken from concept to functioning prototype in less than 6 months, requiring a considered …


Analysis Of Feedback Control Applied With Command Shaping To Minimize Residual Vibration, Nicholas L. Jacobs Aug 2016

Analysis Of Feedback Control Applied With Command Shaping To Minimize Residual Vibration, Nicholas L. Jacobs

Open Access Theses

Joint flexibility is a physical trait that affects all robotic systems to some degree. This characteristic has been shown to be very detrimental to the performance of these robotic systems when implementing fast point-to-point motion. During such motion, the robot will induce vibrations in its structure that will extend past the completion of the move. Many techniques have been applied over the years in order to minimize these residual vibrations. One such method is known as command shaping, which will construct the input profile so as to avoid exciting the natural frequencies of the system. This work seeks to extend …


Design, Testing And Evaluation Of Robotic Mechanisms And Systems For Environmental Monitoring And Interaction, James K. Higgins Aug 2016

Design, Testing And Evaluation Of Robotic Mechanisms And Systems For Environmental Monitoring And Interaction, James K. Higgins

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their …


Design And Testing Of A Novel Adhesion And Locomotion Method For Wall Climbing Vehicles, Jim R. Stefani Jun 2016

Design And Testing Of A Novel Adhesion And Locomotion Method For Wall Climbing Vehicles, Jim R. Stefani

Master's Theses

The objective of this project was to design, construct and test a wall climbing vehicle which uses a novel vacuum tread system for both adhesion and locomotion. The design and manufacturing of this proof of concept vehicle is detailed with particular emphasis on the design decisions that proved most impactful to the performance of both the vehicle and the tread system. Adhesion performance was characterized by a series of tests that validate the concept, but also identify improvements and design recommendations for future embodiments of the adhesion/locomotion system.


Design Of Medical Devices For Diagnostics In The Gastrointestinal System, Charles R. Welch Apr 2016

Design Of Medical Devices For Diagnostics In The Gastrointestinal System, Charles R. Welch

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents the design, controls, and testing of two systems: a novel colonoscope locomotion design for diagnostics, and a biosensor capsule that implants a sensor in the small intestine. Each system requires special design considerations for use in the gastrointestinal system.

Colonoscopy procedures are recommended as a screening for colon cancer and related conditions after the age of 50. The need for an improved colonoscope that reduces the colonoscopy time and patient discomfort is apparent. The semi-autonomous device presented here could likely reduce the colonoscopy procedure time by allowing the physician to focus more on the diagnosis and less …


Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang Sep 2015

Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang

USF Tampa Graduate Theses and Dissertations

A teleoperated system of dual redundant manipulator will be controlled in this thesis. The robot used with the dual redundant manipulator in this thesis is Baxter. Baxter’s redundant robot arms are 7-degree-of-freedom arms. The problem that will be solved in this thesis is optimization of the 7-degree-of-freedom robot arms. The control algorithm of the 7-degree-of-freedom robot arms will be discussed and built. A simulation program will be built to test the control algorithm. Based on the control algorithm, a teleoperation system will be created for Baxter. The controller used is Omni, which is a six-joint haptic device. Omni will also …


Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel Jun 2014

Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel

Mechanical Engineering

This project is the second iteration of an automated foosball table for Yaskawa America as a trade show display. The table is meant to provide an interactive experience which highlights the speed and precision of the Yaskawa hardware. The first iteration of the project was mainly focused on creating the physical hardware for the system and to begin the basic programming for the system. This phase of the project was focused on finalizing the physical hardware of the system, implementing the vision system and to continue the basic programing of the system AI. A third team will be assigned to …


St. Jude Medical - R&D Robot For Sensor Testing, Andrew Chanul Kim, Stanley Logan Laszczyk, Edgar Nava, Nathan Gall Jun 2014

St. Jude Medical - R&D Robot For Sensor Testing, Andrew Chanul Kim, Stanley Logan Laszczyk, Edgar Nava, Nathan Gall

Electrical Engineering

No abstract provided.


Design And Assembly Of Parabolic Flight Payload To Evaluate Miniature In Vivo Surgical Robots In Microgravity, Kearney M. Lackas May 2014

Design And Assembly Of Parabolic Flight Payload To Evaluate Miniature In Vivo Surgical Robots In Microgravity, Kearney M. Lackas

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Laparoscopic surgery, also known as minimally invasive surgery (MIS), changed the face of surgery in the 1990s. With these procedures, surgeons use long, slender tools which pass through several small incisions. Performing surgery in this fashion has shown many benefits including reduced pain and recovery times, lower costs, and less scarring post-recovery.

The use of surgical robotics has shown several key advantages over MIS techniques. Minimally invasive surgeries typically require unnatural movements, have limited visibility, greatly reduce dexterity, and provide little tactile feedback. Through robot kinematics and specialized sensors, surgical robots can resolve many of these limitations, especially in terms …