Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Microstructure

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 125

Full-Text Articles in Engineering

Mechanical Properties And Microstructure Of Multi-Materials Fabricated Through A Combination Of Lpbf And Ded Additive Manufacturing Techniques, Christopher J. Bettencourt May 2024

Mechanical Properties And Microstructure Of Multi-Materials Fabricated Through A Combination Of Lpbf And Ded Additive Manufacturing Techniques, Christopher J. Bettencourt

All Graduate Theses and Dissertations, Fall 2023 to Present

This research explores the use of different metals combined through 3D-printing to enhance the performance of materials, with a focus on making heat exchangers more cost-effective for renewable energy. The goal is to replace a costly high-temperature alloy with a more affordable low-temperature alloy, using metal additive manufacturing for its benefits such as less material waste, faster production, reduced weight, and the ability to print entire assemblies in one go. The study delves into a unique combination of two 3D-printing techniques, Directed Energy Deposition and Laser Powder-Bed Fusion, to create a multi-material composed of stainless steel 316L and a nickel-based …


The Effect Of Parameters In Cryogenic Treatment On Mechanical Properties Of Tool Steel: A Review, Ronaldus Caesariano Ekaputra, Myrna Ariati Mochtar Dec 2023

The Effect Of Parameters In Cryogenic Treatment On Mechanical Properties Of Tool Steel: A Review, Ronaldus Caesariano Ekaputra, Myrna Ariati Mochtar

Journal of Materials Exploration and Findings (JMEF)

Tool steel is classified as special alloy steel which proposed as dies or mold materials as their high mechanical properties and dimensional stability. In order to improve tool steel’s mechanical properties, heat treatment process, especially, cryogenic treatment is conducted. Cryogenic treatment is done by exposing tool steel material at sub-zero liquid/gas media after heated at austenite temperature. This process significantly affects the martensite phase transformation increase and avoids retained austenite emersion. In particular, the higher martensite volume fraction, the higher hardness and wear resistance value of tool steel. It had been proven that adjusting critical process parameters of cryogenic treatment …


Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu Dec 2023

Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu

Electronic Theses and Dissertations

3D printing pure copper with high electrical conductivity and exceptional density has long been challenging. While laser-based additive manufacturing technologies suffered due to copper's highly reflective nature towards laser beams, parts printed via binder-assisted technologies failed to reach over 90% IACS (International Annealed Copper Standard), electrical conductivity. Although promising techniques such as binder jetting, filament, and pellet-based 3D printing that can print copper exist, they however still face difficulties in achieving both high sintered densities and electrical conductivity values. This is due to a lack of comprehensive understanding of property evolution from green to sintered states and the strategies that …


Twin-Solute, Twin-Dislocation And Twin-Twin Interactions In Magnesium, Materials Yue, Jian Wang, Jian-Feng Nie Jul 2023

Twin-Solute, Twin-Dislocation And Twin-Twin Interactions In Magnesium, Materials Yue, Jian Wang, Jian-Feng Nie

Department of Mechanical and Materials Engineering: Faculty Publications

Magnesium alloys have received considerable research interest due to their lightweight, high specific strength and excellent castability. However, their plastic deformation is more complicated compared to cubic materials, primarily because their low-symmetry hexagonal closepacked (hcp) crystal structure. Deformation twinning is a crucial plastic deformation mechanism in magnesium, and twins can affect the evolution of microstructure by interacting with other lattice defects, thereby affecting the mechanical properties. This paper provides a review of the interactions between deformation twins and lattice defects, such as solute atoms, dislocations and twins, in magnesium and its alloys. This review starts with interactions between twin boundaries …


Crystalline–Amorphous Nanostructures: Microstructure, Property And Modelling, Binqiang Wei, Lin Li, Lin Shao, Jian Wang Apr 2023

Crystalline–Amorphous Nanostructures: Microstructure, Property And Modelling, Binqiang Wei, Lin Li, Lin Shao, Jian Wang

Department of Mechanical and Materials Engineering: Faculty Publications

Crystalline metals generally exhibit good deformability but low strength and poor irradiation tolerance. Amorphous materials in general display poor deformability but high strength and good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition, high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation. In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation …


Synthesizing Ti–Ni Alloy Composite Coating On Ti–6al–4v Surface From Laser Surface Modification, Yitao Chen, Joseph William Newkirk, Frank W. Liou Feb 2023

Synthesizing Ti–Ni Alloy Composite Coating On Ti–6al–4v Surface From Laser Surface Modification, Yitao Chen, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In This Work, a Ni-Alloy Deloro-22 Was Laser-Deposited on a Ti–6Al–4V Bar Substrate with Multiple Sets of Laser Processing Parameters. the Purpose Was to Apply Laser Surface Modification to Synthesize Different Combinations of Ductile TiNi and Hard Ti2Ni Intermetallic Phases on the Surface of Ti–6Al–4V in Order to Obtain Adjustable Surface Properties. Scanning Electron Microscopy, Energy Dispersion Spectroscopy, and X-Ray Diffraction Were Applied to Reveal the Deposited Surface Microstructure and Phase. the Effect of Processing Parameters on the Resultant Compositions of TiNi and Ti2Ni Was Discussed. the Hardness of the Deposition Was Evaluated, and Comparisons with …


The Effect Of Sample Placement In The Furnace During The Heat Treatment Process Of 7075-T6 Aluminum Alloy On Microstructure, Hardness, And Electrical Conductivity, Donanta Dhaneswara, Hardi Rindharto, Muhammad Syauqi Aqilafif Aug 2022

The Effect Of Sample Placement In The Furnace During The Heat Treatment Process Of 7075-T6 Aluminum Alloy On Microstructure, Hardness, And Electrical Conductivity, Donanta Dhaneswara, Hardi Rindharto, Muhammad Syauqi Aqilafif

Journal of Materials Exploration and Findings (JMEF)

This paper reports the effects of sample placement during the heat treatment on the microstructural morphology and mechanical properties of 7075 Al alloy such as hardness value and electrical conductivity. The material was in the formed of Al alloy sheets where samples were machined into a square with dimensions of 1.5 x 1.5 inch. The 7075-T0 Al alloy as samples were given heat treatment by precipitation hardening (aging) at temperature 120°C for 24 hours, so it becomes 7075-T6 Al alloy. Samples were subjected to some mechanical tests and the morphology of the resulting microstructures were characterized by optical microscopy. The …


Aluminum-Based Material Fabrication By Friction Stir Processing: Microstructural Evolution And Mechanical Properties, Suhong Zhang Aug 2022

Aluminum-Based Material Fabrication By Friction Stir Processing: Microstructural Evolution And Mechanical Properties, Suhong Zhang

Doctoral Dissertations

Friction stir processing (FSP) is an energy efficient solid-state material processing technique for microstructure modification of commercial high-strength Al alloys. Many variant techniques were developed in recent years that enabled light-weight and high-strength structure fabrication. Identifying relationship among process conditions, microstructures, and mechanical properties is of critical importance to facilitate the practical implementation of these new techniques. The research in the dissertation focusses on developing two main techniques of the FSP: a) friction stir back extrusion (FSBE) of 6063 aluminum alloy for tube making and b) FSP of 7075 aluminum alloy from powder feedstock. FSBE fabricated Al 6063 alloy tubes …


Investigating The Effects Of Sic Abrasive Particles On Friction Element Welding, Gaurav Awate May 2022

Investigating The Effects Of Sic Abrasive Particles On Friction Element Welding, Gaurav Awate

All Theses

The growing demands on reducing the harmful emissions from automobiles have forced automakers to reduce the weight of the vehicle. The increasing demands on improving the fuel economy also has challenged automotive manufacturers to make the vehicle as lightweight as possible. However, the challenge is also to ensure that the vehicle meets safety standards. For the vehicle to meet these standards, it needs to be of adequate strength as well. Automotive manufacturers have adopted a strategy of using multi-material construction to achieve the target. But with multi-material construction comes the requirement of advanced joining techniques that are capable of joining …


Microstructural Characteristics And Mechanical Properties Of Additively Manufactured Cu–10sn Alloys By Laser Powder Bed Fusion, Abhishek Mehta, Le Zhou, Holden Hyer, Thinh Huynh, Binghao Lu, Erica J. Drobner, Sun Hong Park, Yongho Sohn Mar 2022

Microstructural Characteristics And Mechanical Properties Of Additively Manufactured Cu–10sn Alloys By Laser Powder Bed Fusion, Abhishek Mehta, Le Zhou, Holden Hyer, Thinh Huynh, Binghao Lu, Erica J. Drobner, Sun Hong Park, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

Cu – 10 wt% Sn (Cu–10Sn) alloy specimens were additively manufactured by varying the laser powder bed fusion (LBPF) processing parameters, e.g., laser power (200–350 W) and laser scan speed (100–1400 mm/s) at a fixed hatch spacing (0.12 mm) and slice thickness (0.03 mm), to examine their effects on the density, melt pool structure, and microstructure. Microstructural characteristics of the most dense sample were examined using electron microscopy (SEM, TEM) and X-ray Diffraction. The grains in the top-most melt pool layer showed a fan-like structure, whereas all other areas showed small columnar structure aligned nearly parallel to the build direction …


Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez Mar 2022

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Joints of complex phase 780 (CP-780) advanced high strength steel (AHSS) were carried out by using an ER-CuAl-A2 filler metal for the gas metal arc welding pulsed brazing (GMAW-P- brazing) process and the ER-80S-D2 for the GMAW-P process employing two levels of heat input. The phases in the weld bead and HAZ were analyzed, and the evaporation of zinc by means of scanning electron microscopy (SEM) was also monitored. The mechanical properties of the welded joints were evaluated by tension, microhardness and vertical impact tests. It was found that there was greater surface Zn evaporation in the joints welded with …


Closed-Loop Control Of Meltpool Temperature In Directed Energy Deposition, Ziyad M. Smoqi, Ben Bevans, Aniruddha Gaikwad, James Craig, Alan Abul-Haj, Brent Roeder, Bill Macy, Jeffrey E. Shield, Prahalada K. Rao Mar 2022

Closed-Loop Control Of Meltpool Temperature In Directed Energy Deposition, Ziyad M. Smoqi, Ben Bevans, Aniruddha Gaikwad, James Craig, Alan Abul-Haj, Brent Roeder, Bill Macy, Jeffrey E. Shield, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this work is to mitigate flaw formation in powder and laser-based directed energy deposition (DED) additive manufacturing process through close-loop control of the meltpool temperature. In this work, the meltpool temperature was controlled by modulating the laser power based on feedback signals from a coaxial two-wavelength imaging pyrometer. The utility of closed-loop control in DED is demonstrated in the context of practically inspired trapezoid-shaped stainlesssteel parts (SS 316L). We demonstrate that parts built under closed-loop control have reduced variation in porosity and uniform microstructure compared to parts built under open-loop conditions. For example, post-process characterization showed that …


Solute Concentration Effects On Microstructure And The Compressive Strength Of Ice-Templated Sintered Lithium Titanate, Rohan Parai, Ziyang Nie, Raina Hempley, Gary M. Koenig Jr., Dipankar Ghosh Jan 2022

Solute Concentration Effects On Microstructure And The Compressive Strength Of Ice-Templated Sintered Lithium Titanate, Rohan Parai, Ziyang Nie, Raina Hempley, Gary M. Koenig Jr., Dipankar Ghosh

Mechanical & Aerospace Engineering Faculty Publications

This work investigated the role of sucrose and cationic dispersant (1‐hexadecyl)trimethylammonium bromide concentration on ice‐templated sintered lithium titanate microstructure and compressive strength, to enable a comprehensive understanding of composition selection and elucidate processing–microstructure–mechanical property relationships. Sucrose and dispersant concentrations were varied to change total solute concentration in suspensions and viscosity. Dispersant was more effective in reducing viscosity than sucrose; however, their combination had an even greater impact on reducing viscosity. Based on viscosity measurements, a total of 12 suspension compositions were developed, and materials were fabricated at two different freezing front velocity (FFV) regimes. Solute concentration greatly influenced ice‐templated microstructure …


Microstructural Development In Inconel 718 Nickel-Based Superalloy Additively Manufactured By Laser Powder Bed Fusion, Thinh Huynh, Abhishek Mehta, Kevin Graydon, Jeongmin Woo, Sharon Park, Holden Hyer, Le Zhou, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, Yongho Sohn Jan 2022

Microstructural Development In Inconel 718 Nickel-Based Superalloy Additively Manufactured By Laser Powder Bed Fusion, Thinh Huynh, Abhishek Mehta, Kevin Graydon, Jeongmin Woo, Sharon Park, Holden Hyer, Le Zhou, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

Excellent weldability and high temperature stability make Inconel 718 (IN718) one of the most popular alloys to be produced by additive manufacturing. In this study, we investigated the effects of laser powder bed fusion (LPBF) parameters on the microstructure and relative density of IN718. The samples were fabricated with independently varied laser power (125–350 W), laser scan speed (200–2200 mm/s), and laser scan rotation (0°–90°). Archimedes’ method, optical microscopy, and scanning electron microscopy were employed to assess the influence of LPBF parameters on the relative density and microstructure. Optimal processing windows were identified for a wide range of processing parameters, …


Integrating Temperature Dependence Into A Microstructure-Sensitive Fatigue Model For Titanium Alloys, Jared Michael Darius Jan 2022

Integrating Temperature Dependence Into A Microstructure-Sensitive Fatigue Model For Titanium Alloys, Jared Michael Darius

Masters Theses

This work seeks to integrate temperature dependence into a microstructure-sensitive fatigue model for titanium alloys produced by both extrusion and electron beam melting (EBM) additive manufacturing, revising and enhancing the MultiStage Fatigue (MSF) model as the foundational model framework. Traditional fatigue modeling has required design engineers to conservatively use a lower-bound estimate of fatigue life predictions given a statistically significant spread of experimental data that can span up to two or sometimes three orders of magnitude for a given test condition. This variation in fatigue data has since been accounted for with the advent of the MSF model, linking individual …


Printing, Characterization, And Mechanical Testing Of Additively Manufactured Refractory Metal Alloys, Brianna M. Sexton Jan 2022

Printing, Characterization, And Mechanical Testing Of Additively Manufactured Refractory Metal Alloys, Brianna M. Sexton

Browse all Theses and Dissertations

Refractory metal alloys in the tungsten molybdenum rhenium ternary system were additively manufactured using laser power bed fusion. Four ternary alloys with varying concentrations of tungsten, molybdenum, and rhenium were manufactured and manufactured again with an addition of 1 wt% hafnium carbide. Samples were heat treated to heal cracks, reduce porosity, and reduce inhomogeneity. Material microstructure was characterized before and after heat treatment using microscopy, energy dispersive x-ray spectroscopy, and electron backscatter diffraction mapping. Mechanical testing was conducted on both three-point bend specimens and compression specimens, resulting in maximum bending strengths of 677.86 MPa, and maximum compression 0.2% yield strengths …


Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar Aug 2021

Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar

Theses and Dissertations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various hatch strategies and energy densities on the microstructures and other materials properties. 3D samples of CuCrFeNiTiAl alloy were fabricated under different energy densities and with different scan vector lengths. The as-built samples were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that face centered cubic, and body centered …


Additive Manufacturing And Mechanical Properties Of The Dense And Crack Free Zr-Modified Aluminum Alloy 6061 Fabricated By The Laser-Powder Bed Fusion, Abhishek Mehta, Le Zhou, Thinh Huynh, Sharon Park, Holden Hyer, Shutao Song, Yunali Bai, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, Yongho Sohn May 2021

Additive Manufacturing And Mechanical Properties Of The Dense And Crack Free Zr-Modified Aluminum Alloy 6061 Fabricated By The Laser-Powder Bed Fusion, Abhishek Mehta, Le Zhou, Thinh Huynh, Sharon Park, Holden Hyer, Shutao Song, Yunali Bai, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

For additive manufacturing such as laser powder bed fusion (LPBF), commercial aluminum alloy (AA) 6061 is typically considered unsuitable due to formation of solidification cracking and/or excessive porosity. In this study, to improve buildability/printability of AA6061, 1 wt% of Zr was alloyed to produce Zr-modified AA6061 by LPBF. Powders of unmodified and Zr-modified AA6061 were produced by gas atomization, and utilized as a feed-stock for the LPBF to fabricate specimens for microstructural examination and mechanical testing. The as-built unmodified AA6061 exhibited poor printability due to formation of cracks and porosity in the microstructure regardless of LPBF parameters. However, the Zr-modified …


Part-Scale Thermal Simulation Of Laser Powder Bed Fusion Using Graph Theory: Effect Of Thermal History On Porosity, Microstructure Evolution, And Recoater Crash, Reza Yavari, Ziyad Smoqi, Alex Riensche, Ben Bevans, Humaun Kobir, Heimdall Mendoza, Hyeyun Song, Kevin Cole, Prahalada Rao Mar 2021

Part-Scale Thermal Simulation Of Laser Powder Bed Fusion Using Graph Theory: Effect Of Thermal History On Porosity, Microstructure Evolution, And Recoater Crash, Reza Yavari, Ziyad Smoqi, Alex Riensche, Ben Bevans, Humaun Kobir, Heimdall Mendoza, Hyeyun Song, Kevin Cole, Prahalada Rao

Department of Mechanical and Materials Engineering: Faculty Publications

Flaw formation in laser powder bed fusion (LPBF) is influenced by the spatiotemporal temperature distribution – thermal history – of the part during the process. Therefore, to prevent flaw formation there is a need for fast and accurate models that can predict the thermal history as a function of the part shape and processing parameters. In previous work, a thermal modeling approach based on graph theory was used to predict the thermal history in LPBF parts in less-than 20% of the time required by finite element-based models with error within 10% of experimental measurements. The present work transitions toward the …


Experimental Characterization And Crystal Plasticity Modeling Of Mechanical Properties And Microstructure Evolution Of Additively Manufactured Inconel 718 Superalloy, Saeede Ghorbanpour Jan 2021

Experimental Characterization And Crystal Plasticity Modeling Of Mechanical Properties And Microstructure Evolution Of Additively Manufactured Inconel 718 Superalloy, Saeede Ghorbanpour

Doctoral Dissertations

In this thesis, the mechanical behavior of the additively manufactured (AM) IN718 nickel-based superalloy and their correlations with the evolution of microstructure are studied comprehensively. The effects of manufacturing parameters, build orientations, and post processing procedures, i.e. standard heat treatment and hot isostatic pressing (HIP), on various mechanical properties including monotonic compression and tension strength, low cyclic fatigue performance, high cyclic fatigue behaviour, and fatigue crack growth behavior are investigated. Due to the high temperature applications of the IN718 alloy, elevated temperature properties are examined as well. Electron Backscattered Diffraction (EBSD) technique is employed to measure the initial and deformed …


Process-Structure Relationship In The Directed Energy Deposition Of Cobalt-Chromium Alloy (Stellite 21) Coatings, Ziyad M. Smoqi, Joshua Toddy, Harold (Scott) Halliday, Jeffrey E. Shield, Prahalada K. Rao Jan 2021

Process-Structure Relationship In The Directed Energy Deposition Of Cobalt-Chromium Alloy (Stellite 21) Coatings, Ziyad M. Smoqi, Joshua Toddy, Harold (Scott) Halliday, Jeffrey E. Shield, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, we accomplished the crack-free directed energy deposition (DED) of a multi-layer Cobalt- Chromium alloy coating (Stellite 21) on Inconel 718 substrate. Stellite alloys are used as coating materials given their resistance to wear, corrosion, and high temperature. The main challenge in DED of Stellite coatings is the proclivity for crack formation during printing. The objective of this work is to characterize the effect of the input energy density and localized laser-based preheating on the characteristics of the deposited coating, namely, crack formation, microstructural evolution, dilution of the coating composition due to diffusion of iron and nickel from …


Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li Jan 2021

Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various process conditions in SLM, such as laser power, point distance and laser exposure time, on the microstructures formed. The as-built samples under high, medium and low energy densities were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that five major crystal structure phases (hexagonal, monoclinic, orthorhombic, body-centered cubic …


Understanding The Laser Powder Bed Fusion Of Alsi10mg Alloy, Holden Hyer, Le Zhou, Sharon Park, Guilherme Gottsfritz, George Benson, Bjorn Tolentino, Brandon Mcwilliams, Kyu Cho, Yongho Sohn Aug 2020

Understanding The Laser Powder Bed Fusion Of Alsi10mg Alloy, Holden Hyer, Le Zhou, Sharon Park, Guilherme Gottsfritz, George Benson, Bjorn Tolentino, Brandon Mcwilliams, Kyu Cho, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

We examine the microstructural characteristics of LPBF AlSi10Mg produced by using a wide range of LPBF processing parameters with independently varied laser power, hatch spacing, scan speed, slice thickness, and the normalized energy density. The lower energy density produced lack of fusion flaws from residual interparticle spacing, while the higher energy density produced spherical pores from trapped gas. The highest density (> 99%) samples were produced by using an energy density of 32 to 54 J/mm3. Within this energy density range, use of smaller slice thicknesses increased the processing window that would produce dense AlSi10Mg samples. A cellular …


Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong Jul 2020

Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The ability to additively manufacture functional alumina ceramics has the potential to lower manufacturing costs and development time for complex components. In this study, the doping effects of zirconia on laser direct deposited alumina ceramics were investigated. The microstructure of the printed samples was analyzed in terms of grain size and composition distribution. The addition of zirconia was found to accumulate along alumina grain boundaries and resulted in significant grain refinement. The zirconia doping largely reduced crack formation during processing compared to that of pure alumina samples. In the case of 10 wt% zirconia, cracking during deposition was nearly completely …


Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh May 2020

Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh

Electronic Theses and Dissertations

Additive manufacturing (AM) is at the mainstream to cater the needs for rapid tooling and small-scale part production. The metal AM of complex geometries is widely accepted and promoted in the industry. While several metal AM technologies exist and are matured to a level where expectation in terms of design and properties are possible to realize. But the metal AM suffers from the heavy expense to acquire equipment, isotropic property challenges, and potential hazards to work with loose reactive metal powder. With this motivation, the dissertation aims to develop the fundamental aspects to print metal parts with bound Ti-6Al-4V powder …


Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia Jan 2020

Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia

Theses: Doctorates and Masters

Current biomaterials such as stainless steel, Co-Cr alloys, commercially pure titanium and Ti-6Al- 4V either possess poor mechanical compatibility and/or produce toxic effects in the human body after several years of usage. Consequently, there is an enormous demand for long-lasting biomaterials which provide a better combination of mechanical, corrosion and biological properties. In addition to this, alloys used in high-strength applications possess either high-strength or large plasticity. However, a high-strength alloy should possess a better blend of both strength and plasticity when used in high-strength applications. Metastable β-titanium alloys are the best suited alloys for biomedical and high-strength applications because …


Fabrication And Characterization Of Alₓcrcufeni₂ High-Entropy Alloys Coatings By Laser Metal Deposition, Wenyuan Cui, Xinchang Zhang, Lan Li, Yitao Chen, Tan Pan, Frank W. Liou Aug 2019

Fabrication And Characterization Of Alₓcrcufeni₂ High-Entropy Alloys Coatings By Laser Metal Deposition, Wenyuan Cui, Xinchang Zhang, Lan Li, Yitao Chen, Tan Pan, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials community, which are defined to contain equiatomic or close-to-equiatomic compositions. HEAs can possess many interesting mechanical properties, and in particular, they have the great potential to be used as coating materials requiring high hardness and wear resistance. In this study, the feasibility of fabrication AlₓCrCuFeNi₂ (x=0,0.75) HEAs was investigated via laser metal deposition from elemental powders. The microstructure, phase structure, and hardness were studied by an optical microscope, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the …


Investigation Of Through Thickness Microstructure And Mechanical Properties In Friction Stir Welded 7n01 Aluminum Alloy Plate, Xingxin Zhao, Zhiyong Yang, Joseph P. Domblesky, Jianmin Han, Zhiqiang Li, Xiaolong Liu Jul 2019

Investigation Of Through Thickness Microstructure And Mechanical Properties In Friction Stir Welded 7n01 Aluminum Alloy Plate, Xingxin Zhao, Zhiyong Yang, Joseph P. Domblesky, Jianmin Han, Zhiqiang Li, Xiaolong Liu

Mechanical Engineering Faculty Research and Publications

An on-going problem in friction stir welded (FSW) joints used in the high-speed train sector is that the microstructure and mechanical properties can significantly vary in thick sections. Because inhomogeneous properties can reduce weld efficiency and degrade service performance, it is of some interest to understand how inhomogeneous properties can develop in FSW welds made from precipitation hardening alloys such as 7N01. In the current study, butt welds were made using 12 mm thick plates and then sectioned perpendicular to the weld line. Five 2.2 mm thick slices were cut from a section and used to measure tensile properties access …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Off Axis Compressive Response Of Ice-Templated Ceramics, Rahul Kumar Jujjavarapu Apr 2019

Off Axis Compressive Response Of Ice-Templated Ceramics, Rahul Kumar Jujjavarapu

Mechanical & Aerospace Engineering Theses & Dissertations

The off-axis compressive behavior of ice-templated ceramic was analyzed using experimental results and micro-mechanical model simulation. Ice-templated ceramics is a versatile processing technique used to manufacture anisotropic ceramic foam by exploiting the anisotropic growth characteristics and lamellar morphology. The ice-templating process results in processing-structure-property relationships determined by the microstructure. The processed alumina samples which were later manufactured by water jet machine from the freeze casting were tested under quasi-static off-axis loading conditions and were used to determine the mechanical properties of the material. Digital image correlation (DIC) was used to measure the strain response of ice-templated ceramic under off-axis loading. …