Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Aircraft

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Engineering

Numerical Analysis Of A Multi-Stage Elastohydrodynamic Seal For Aircraft Engines, Md Wasif Hasan Jan 2024

Numerical Analysis Of A Multi-Stage Elastohydrodynamic Seal For Aircraft Engines, Md Wasif Hasan

Electronic Theses and Dissertations

At present, both governmental and private aviation enterprises are trying to develop aircraft that are swifter, more lightweight, and more cost-effective in order to maintain competitiveness on both the domestic and global stage. Continuous innovation and sustainability efforts are necessary to achieve advancements in aviation systems, such as fans, compressors, combustors, and turbines, as well as sub-systems, like engine seals. Advanced engine seals exhibit considerable potential in enhancing the engine's pressure ratio and cycle temperatures, leading to reduced engine weight, increased thrust, and improved fuel economy. In this study, a novel multistage seal idea has been proposed for the supercritical …


3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina Jun 2023

3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina

Mechanical Engineering

This project is to design, build, and test a 3D-printable aircraft. The goal is to create a final design that will be able to fly for the longest duration possible, around 20 seconds. To determine the correct preliminary design and manufacturing process for a 3D printed RC aircraft, an analysis of multiple design options and manufacturing materials was performed. This allowed for a variety of choices for aircraft type, airfoil design, structure, among other topics to be narrowed down to the most promising option. It has been found that the aircraft will follow a design similar to industry motor-gliders, with …


Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


An Alternate Dimensionless Form Of The Linearized Rigid-Body Aircraft Equations Of Motion With Emphasis On Dynamic Parameters, Douglas F. Hunsaker, Benjamin C. Moulton Jan 2023

An Alternate Dimensionless Form Of The Linearized Rigid-Body Aircraft Equations Of Motion With Emphasis On Dynamic Parameters, Douglas F. Hunsaker, Benjamin C. Moulton

Mechanical and Aerospace Engineering Student Publications and Presentations

The equations of motion for an aircraft can be linearized about a reference condition within the assumptions of small disturbances and linear aerodynamics. The resulting system of equations is typically solved to obtain the eigenvalues and eigenvectors that describe the small disturbance motion of the aircraft. Results from such an analysis are often used to predict the rigid-body dynamic modes of the aircraft and associated handling qualities. This process is typically carried out in dimensional form in most text books, or in nondimensional form using dimensionless parameters rooted in aerodynamic theory. Here we apply Buckingham’s Pi theorem to obtain nondimensional …


Simplified Mass And Inertial Estimates For Aircraft With Components Of Constant Density, Benjamin C. Moulton, Douglas F. Hunsaker Jan 2023

Simplified Mass And Inertial Estimates For Aircraft With Components Of Constant Density, Benjamin C. Moulton, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

Aircraft mass and inertial properties are required for predicting the dynamics and handling qualities of aircraft. However, such properties can be difficult to estimate since these depend on the external shape and internal structure, systems, and mass distributions within the airframe. Mass and inertial properties of aircraft are often predicted using computer-aided design software, or measured using various experimental techniques. The present paper presents a method for quickly predicting the mass and inertial properties of complete aircraft consisting of components of constant density. Although the assumption of constant density may appear limiting, the method presented in this paper can be …


Landing Gear Sealing Solution, Andrew Milligan Jan 2023

Landing Gear Sealing Solution, Andrew Milligan

Williams Honors College, Honors Research Projects

XYZ Landing Gear Solutions has been tasked with redesigning two internal components of the landing gears for the ABC-123 aircraft program. The customer, ABC Aeronautics, informed XYZ Landing Gear Solutions that a particular system of the landing gear does not meet the necessary performance requirements of the program. As a result, the entire system will have to be removed, facilitating the need for a redesign of the two components that the system interfaced with. The focus of this project will be completing the redesign process for both of these components. “Redesign” and “design” will be used interchangeably in this report. …


Linearized Rigid-Body Static And Dynamic Stability Of An Aircraft With A Bio-Inspired Rotating Empennage, Austin J. Kohler Dec 2022

Linearized Rigid-Body Static And Dynamic Stability Of An Aircraft With A Bio-Inspired Rotating Empennage, Austin J. Kohler

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The United States Air Force (USAF) will likely seek to remove the vertical tail of next-generation fighter aircraft. This work seeks to characterize the static and dynamic stability and handling qualities of a vertical-tailless aircraft concept that would satisfy the USAF’s goal. This concept aircraft, one modified with a Bio-Inspired Rotating Empennage (BIRE), does not have a vertical tail, and is instead capable of rotating the horizontal tail about the fuselage axis for maneuvering. The dynamic characteristics of the BIRE-modified aircraft are compared to a baseline unmodified aircraft, similar to the F16, with a traditional vertical tail. Linearized aerodynamic models …


Meshless Large Eddy Simulation Of Propeller-Wing Interactions With Reformulated Vortex Particle Method, Eduardo Alvarez, Andrew Ning Nov 2022

Meshless Large Eddy Simulation Of Propeller-Wing Interactions With Reformulated Vortex Particle Method, Eduardo Alvarez, Andrew Ning

Faculty Publications

The vortex particle method (VPM) has gained popularity in recent years due to a growing need to predict complex aerodynamic interactions during preliminary design of electric multirotor aircraft. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In recent work, the VPM has been reformulated as a large eddy simulation (LES) in a scheme that is both meshless and numerically stable, without increasing its computational cost. In this study, we build upon this meshless LES scheme to create a solver for interactional aerodynamics. Rotor blades are introduced through an actuator line …


Uncrewed Aircraft Systems For Autonomous Infrastructure Inspection, Michail Kalaitzakis Oct 2022

Uncrewed Aircraft Systems For Autonomous Infrastructure Inspection, Michail Kalaitzakis

Theses and Dissertations

Uncrewed Aircraft Systems (UAS) are becoming increasingly popular for infrastructure inspections since they offer increased safety, decreased costs and consistent results, compared to traditional methods. However, there are still many open challenges before fully autonomous, reliable, and repeatable UAS inspections. While a UAS platform has increased mobility and can easily approach hard to reach areas, it has limited range and payload capacity and is susceptible to environmental disturbances. Therefore, current operations are limited to Visual Line of Sight (VLOS) manual inspections that usually result in just a qualitative (visual) assessment of the structure.

The objective of this work is to …


Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz Jan 2022

Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz

Theses and Dissertations--Mechanical Engineering

Advances in the miniaturization of powerful electronic components and motors, the democratization of global navigation satellite systems (GNSS), and improvements in the performance, safety, and cost in lithium batteries has led to the proliferation of small and relatively inexpensive unmanned aerial vehicles (UAVs). Many of these UAVs are of the multi-rotor design, however, fixed-wing designs are often more efficient than rotary-wing aircraft, leading to a reduction in the power required for a UAV of a given mass to stay airborne. Autonomous cooperation between multiple UAVs would enable them to complete objectives that would be difficult or impossible for a single …


Blds Pressure Belt, Hailey Earnest, Sean Casteel, Benjamin Bons, Biren Rama Jun 2021

Blds Pressure Belt, Hailey Earnest, Sean Casteel, Benjamin Bons, Biren Rama

Mechanical Engineering

Dr. Westphal has a Boundary Layer Data System (BLDS) that is used to take pressure measurements on the surface of the aircraft. Our team has created a design and manufacturing method for producing the corresponding pressure belt that attaches to Dr. Westphal's system to obtain pressure data.


3d-Printed Wings With Morphing Trailing-Edge Technology, Benjamin C. Moulton, Douglas F. Hunsaker Jan 2021

3d-Printed Wings With Morphing Trailing-Edge Technology, Benjamin C. Moulton, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

In recent years, various groups have attempted to improve aircraft efficiency using wings with morphing trailing-edge technology. Most of these solutions are difficult to manufacture or have limited morphing capability. The present paper outlines a research effort to develop an easy to manufacture, fully 3D-printed morphing wing. This approach is advantageous due to the low cost, minimal man-hours required for manufacturing, and speed at which design iterations can be explored. Several prototypes were designed and tested and lessons learned from these iterations have been documented. Additionally, printer settings have been tested and catalogued to assist others attempting to reproduce these …


Development Of A Combined Thermal Management And Power Generation System Using A Multi-Mode Rankine Cycle, Nathaniel M. Payne Jan 2021

Development Of A Combined Thermal Management And Power Generation System Using A Multi-Mode Rankine Cycle, Nathaniel M. Payne

Browse all Theses and Dissertations

Two sub-systems that present a significant challenge in the development of high performance air vehicle exceeding speeds of Mach 5 are the power generation and thermal management sub-systems. The air friction experienced at high speeds, particularly around the engine, generates large thermal loads that need to be managed. In addition, traditional jet engines do not operate at speeds greater than Mach 3, therefore eliminating the possibility of a rotating power generator. A multi-mode water-based Rankine cycle is an innovative method to address both of these constraints of generating power and providing cooling. Implementing a Rankine cycle-based system allows for the …


Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg Jan 2021

Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg

Browse all Theses and Dissertations

A set of guidance control laws is developed for application to a reduced order dynamic aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR) is developed, together with methods for easing the design burden associated with gain tuning. Metrics are developed to assess the stability margin of the controller over the full flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control path is then added to the architecture. The performance of the guidance control laws is assessed through time domain step response metrics as well as through execution of a design mission. The …


Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg Jan 2021

Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg

Browse all Theses and Dissertations

A set of guidance control laws is developed for application to a reduced order dynamic aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR) is developed, together with methods for easing the design burden associated with gain tuning. Metrics are developed to assess the stability margin of the controller over the full flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control path is then added to the architecture. The performance of the guidance control laws is assessed through time domain step response metrics as well as through execution of a design mission. The …


Urban Cargo Transport Uav Final Design Review, Niko Giannakakos, Rafael Barreto Gutierrez, Tejas Bhavsar Apr 2020

Urban Cargo Transport Uav Final Design Review, Niko Giannakakos, Rafael Barreto Gutierrez, Tejas Bhavsar

Senior Design Project For Engineers

Delivery of goods to homes and offices over the last decades has seen a significant increase as more people and businesses need or want items sent directly to them. With the increase in demand, technology has also experienced a rapid growth, specifically in the field of unmanned aerial vehicles (UAVs). Many major companies are currently researching UAVs as the future of their delivery operations. With this ever-growing demand, NASA has issued a design competition of a UAV developed for urban deliveries. This unmanned aircraft system (UAS) would need to be able to deliver small packages, in a timely manner, within …


Design Of Banner Tow Mechanism For Bush Plane, Kyle Ciarrone, Ivan Martin, Rishabh Gadi, Tyler Brandt Jan 2020

Design Of Banner Tow Mechanism For Bush Plane, Kyle Ciarrone, Ivan Martin, Rishabh Gadi, Tyler Brandt

Williams Honors College, Honors Research Projects

The 2019-2020 AIAA DBF objective was to design, build, and test a banner-towing bush plane that carries wooden passengers and luggage. Senior members on the team undertook the creation of the banner tow mechanism subsystem as their senior design project on behalf of the design team due to the challenge of its mechanical design and the aerodynamic considerations regarding its placement and enclosure aboard the aircraft. The competition as well as access to campus resources were canceled due to COVID-19, so full testing and integration of the mechanism was not achieved. However, the engineering design process was experienced from the …


Aircraft Hydraulic Systems - Fundamentals, Nihad E. Daidzic Sep 2019

Aircraft Hydraulic Systems - Fundamentals, Nihad E. Daidzic

Aviation Department Publications

Aircraft hydraulic systems are essential non-propulsive power systems. Hydraulic power systems are used to power major functional aircraft systems, such as flight controls (primary and secondary), friction braking, nose gear steering, thrust-reversers, operating heavy cargo doors, etc.


Subscale Mars Colonization Mission, Cameron J. Lamack, James Lumsden, Sean Nevin, Donner Schoeffler, Riley Evers, Alexandra Poulakos, Skyler Tan, Anthony Keba, Siraj Zaman, Ali Altamimi, Anthony Modica May 2019

Subscale Mars Colonization Mission, Cameron J. Lamack, James Lumsden, Sean Nevin, Donner Schoeffler, Riley Evers, Alexandra Poulakos, Skyler Tan, Anthony Keba, Siraj Zaman, Ali Altamimi, Anthony Modica

Honors Thesis

The team will compete in the SAE (Society of Automotive Engineers) Aero Design West Advanced Class competition, held 5-7th April 2019 in Van Nuys, California. The team will work to develop, through research, design, optimizational trade studies, and manufacturing, a system for the deployment of parasitic aircraft, as well as payload. The system will consist of a primary fixed-wing aircraft, parasitic autonomous gliders, a real-time altitude data acquisition system, as well as both static and releasable payload. The deployable gliders must navigate autonomously to a targeting area on the ground without any on-board propulsion. The releasable payload, which will consist …


Expendable 3d Printed Rescue Drone, Matthew Chapman, Nathan Knutty, Matthew Chapman Jan 2019

Expendable 3d Printed Rescue Drone, Matthew Chapman, Nathan Knutty, Matthew Chapman

Williams Honors College, Honors Research Projects

This project team designed a 3D printed, expendable drone capable of flying for 80 minutes with a 5 lb payload in order to deliver rescue supplies to individuals in distress.


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy- optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Model Predictive Power Management Of A Hybrid Electric Propulsion System For Aircraft, Tyler J. Wall Dec 2017

Model Predictive Power Management Of A Hybrid Electric Propulsion System For Aircraft, Tyler J. Wall

Masters Theses

This work presents the switched optimal power flow control for an aircraft with a hybrid electric propulsion system. The propulsion system is a switched system that operates in either of two modes: (i) battery discharging and electric motor propelling and (ii) battery charging and electric motor generating. The aircraft model and components that form the hybrid propulsion system are modeled as either an algebraic power source/sink or as a dynamic model with appropriate power and state interconnections. With the system model defined, a model predictive control power management strategy is set fourth which minimizes a performance index that includes altitude …


Development Of Guidance Laws For A Reduced Order Dynamic Aircraft Model, Jack W. Brendlinger Jan 2017

Development Of Guidance Laws For A Reduced Order Dynamic Aircraft Model, Jack W. Brendlinger

Browse all Theses and Dissertations

A set of guidance control laws has been developed for enabling three distinct modes of operation of a reduced order dynamic aircraft model. These include 1) a waypoint following control law, 2) a trajectory tracking control law, and 3) a set of kinematically constrained control laws for reaching a commanded altitude, speed or heading. The formulation of the reduced order model is presented so that the capabilities and limitations of the model are understood, and so that the interface architecture between the controllers and the plant is clearly defined. The controller formulations are then presented, together with sample results. The …


A Genetic Algorithm Incorporating Design Choice For The Preliminary Design Of Unmanned Aerial Vehicles, Kenneth Michael Mull Dec 2016

A Genetic Algorithm Incorporating Design Choice For The Preliminary Design Of Unmanned Aerial Vehicles, Kenneth Michael Mull

Masters Theses

Unmanned Aerial Vehicles (UAVs) are currently at the forefront of aerospace technologies. The design of these aircraft is complex and often performance characteristics are coupled to multiple design attributes. At the early design phase both discrete and continuous design choices are present limiting the feasibility of traditional derivative based optimization techniques. In place of these methods, the design space can be explored using a genetic algorithm that mimics the process of natural selection, providing a capable and reliable base airframe constructed from the required performance metrics. By incorporating a genetic multidisciplinary optimization algorithm early in the conceptual design phase, aircraft …


Software-And Hardware-In-The-Loop Verification Of Flight Dynamics Model And Flight Control Simulation Of A Fixed-Wing Unmanned Aerial Vehicle, Calvin Coopmans, Michal Podhradsk, Nathan V. Hoffer Nov 2015

Software-And Hardware-In-The-Loop Verification Of Flight Dynamics Model And Flight Control Simulation Of A Fixed-Wing Unmanned Aerial Vehicle, Calvin Coopmans, Michal Podhradsk, Nathan V. Hoffer

Mechanical and Aerospace Engineering Faculty Publications

Unmanned aerial system (UAS) use is ever-increasing. In this paper, it is shown that even with low-cost hardware and open-source software, simple numerical testing practices (software- and hardware-in-the-loop) can prove the accuracy and usefulness of an aeronautical flight model, as well as provide valuable pre-flight testing of many situations typically only encountered in flight: high winds, hardware failure, etc. Software and hardware simulation results are compared with actual flight testing results to show that these modeling and testing techniques are accurate and provide a useful testing platform for a small unmanned aerial vehicle. Source code used in simulation is open …


A Collaborative Conceptual Aircraft Design Environment For The Design Of Small-Scale Uavs In A Multi-University Setting, Joseph Samuel Becar May 2015

A Collaborative Conceptual Aircraft Design Environment For The Design Of Small-Scale Uavs In A Multi-University Setting, Joseph Samuel Becar

Theses and Dissertations

In today's competitive global market, there is an ever-increasing demand for highly skilled engineers equipped to perform in teams dispersed over several time-zones by geography. Aerospace Partners for the Advancement of Collaborative Engineering (AerosPACE) is a senior design capstone program co-developed by academia and industry to help students develop the necessary skills to excel in the aerospace industry by challenging them to design, build, and fly an unique unmanned aerial vehicle (UAV). Students with little to no experience designing UAVs are put together in teams with their peers from geographically dispersed universities. This presents a significant challenge for the students …


Radio Controlled Aircraft, Michael Johnson, Dakota Macgill, Robert Peake, Ryan Wydler Jan 2015

Radio Controlled Aircraft, Michael Johnson, Dakota Macgill, Robert Peake, Ryan Wydler

Capstone Design Expo Posters

Building an R/C aircraft isn’t exactly a project intent on breaking ground in the field of aerospace engineering, rather it is an opportunity to apply fluid dynamics in a practical manner to gain experience in aeronautical engineering. An aerospace engineer is one who designs and builds aircraft and spacecraft and are often tasked with deeming an aircraft flight worthy or not. We will attempt to predict the feasibility of our custom plane designs using aircraft engineering techniques found through research and through texts provided by our advisor, Dr. Jayasimha. The goal of this design is to design and fabricate a …


Methods For Determining Grease Service Levels In An Ah-64d Intermediate Gearbox Using On-Board Sensors, Travis Steven Edwards Jan 2015

Methods For Determining Grease Service Levels In An Ah-64d Intermediate Gearbox Using On-Board Sensors, Travis Steven Edwards

Theses and Dissertations

The intermediate gearbox (IGB) on the AH-64D was chosen as the subject for this study based on the persistent grease leaks that require grounding aircraft. The aircraft is not currently equipped with a method of detecting grease loss during flight, so techniques for analyzing the usefulness of old metrics and possible new techniques can be tested. The main objective of this study is to use the aircraft’s on-board sensors to develop a method of determining the lubrication level of the IGB. Currently, the most reliable method for detecting a fault on the aircraft is through the use of vibration-based condition …


Cost Avoidance Analysis Of Military Aircraft Components Utilizing Condition-Based Maintenance Practices, Erin Ballentine Dec 2014

Cost Avoidance Analysis Of Military Aircraft Components Utilizing Condition-Based Maintenance Practices, Erin Ballentine

Theses and Dissertations

This research involves two major case studies. Both look at the current maintenance practices done by the United States Army and propose a solution for improvement utilizing condition-based maintenance (CBM) practices. Each study details a cost avoidance that can be earned by implementing the solutions and the resulting benefits that can be experienced. Case Study I is a return on investment (ROI) that analyzes the benefits of the implementation of elastomeric wedges as vibration control on the Apache (AH-64D) aircraft. Analysis of the material and operational costs shows that the use of self-adhering elastomeric trailing edge wedges on the Apache …


Extended Formation Flight At Transonic Speeds, Andrew Ning, Ilan Kroo, Michael Aftosmis, Marian Nemec, James Kless Sep 2014

Extended Formation Flight At Transonic Speeds, Andrew Ning, Ilan Kroo, Michael Aftosmis, Marian Nemec, James Kless

Faculty Publications

Aircraft flown in formation can realize significant reductions in induced drag by flying in regions of wake upwash. However, most transports fly at transonic speeds where the impact of compressibility on formation flight is not well understood. This study utilizes an Euler solver to analyze the inviscid aerodynamic forces and moments of transonic wing/body configurations flying in a two-aircraft formation. Formations with large streamwise separation distances (10-50 wingspans) are considered.

This work indicates that compressibility-related drag penalties in formation flight may be eliminated by slowing 2-3% below the nominal out-of-formation cruise Mach number (either at fixed lift coefficient or fixed …