Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

University of Tennessee, Knoxville

Masters Theses

Theses/Dissertations

Additive

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Redundant Kinematics Solution For A Combined 6dof Robotic Manipulator And 2dof Part Positioner In A Waam Application, Ethan C. Vals May 2022

Redundant Kinematics Solution For A Combined 6dof Robotic Manipulator And 2dof Part Positioner In A Waam Application, Ethan C. Vals

Masters Theses

A typical wire arc additive manufacturing (WAAM) robot cell consists of a 6 DOF robot manipulator and a 2 DOF part positioner. Since the WAAM process requires a minimum of 5 DOFs, there are three redundant DOFs in the system that can be utilized to improve the robot manipulator positioning during part printing. In this thesis, the redundant kinematics of a manipulator and part positioner robot system are solved and then implemented on an actual robot system. The inverse kinematics of the manipulator and part positioner are solved as a kinematic chain using the pseudo-inverse Jacobian method. The two DOFs …


Tribological Testing And Analysis Of Ionic Liquids As Candidate Anti-Wear Additives For Next-Generation Engine Lubricants, William Charles Barnhill May 2016

Tribological Testing And Analysis Of Ionic Liquids As Candidate Anti-Wear Additives For Next-Generation Engine Lubricants, William Charles Barnhill

Masters Theses

In this work, fourteen ionic liquids (ILs) were assayed as potential next-generation engine oil additives. After screening for corrosion, thermal stability and oil solubility, candidate additives were subjected to friction and wear tests in both boundary and mixed regime lubrication. While each IL demonstrated friction and wear reduction compared to base oil without any additives, oil miscible ILs tetraoctylphosphonium bis 2-ethylhexyl phosphate ([P8888][DEHP]) and trioctylammonium bis 2-ethylhexylphosphate ([N888H][DEHP]) were the best performers in bench tests with a XX% and XX% improvement in wear over the base oil respectively. Each of these ILs excellent solubility and superior performance was attributed to …