Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Identification Of Neuromarkers Using Structural And Functional Neuroimaging, Sreevalsan Sanathanan Menon Jan 2021

Identification Of Neuromarkers Using Structural And Functional Neuroimaging, Sreevalsan Sanathanan Menon

Doctoral Dissertations

"One of the grand challenges in science is understanding the human brain. Recent advances in magnetic resonance imaging have opened unmatched opportunities to demystify neural circuitry. In this research, the spatially and temporally complex neuroimaging data were used to identify neuromarkers that aids in quantifying a brain’s health. In the first part, a comparison of static and dynamic functional connectivities was made to study their efficacies in identifying intrinsic individual connectivity patterns. Results show that the intrinsic individual connectivity pattern can be used as a ‘fingerprint’ to distinguish among and identify subjects and their biological sex and is more accurately …


Investigation Of The Sensitivity Of Human Arm To Small Interaction Forces During Physical Human-Robot Interaction (Phri), Fazlur Rashid Jan 2021

Investigation Of The Sensitivity Of Human Arm To Small Interaction Forces During Physical Human-Robot Interaction (Phri), Fazlur Rashid

Masters Theses

“Understanding the human motor control strategy during physical interaction tasks is crucial for developing future robots for physical human-robot interaction (pHRI). Effective pHRI depends on humans communicating their intentions for movement with robots. In physical human-human interaction (pHHI), small interaction forces are known to convey their intent between the partners. It is speculated that small interaction forces contain significant information to convey the movement intention of pHHI. However, the mechanism underlying this interaction strategy is largely unknown. Hence, the aim of this work was to investigate what affects humans’ sensitivity to the interaction forces. The hypothesis was that small interaction …


Development Of In-Situ Radiometric Inspection Methods For Quality Assurance In Laser Powder Bed Fusion, Cody S. Lough Jan 2021

Development Of In-Situ Radiometric Inspection Methods For Quality Assurance In Laser Powder Bed Fusion, Cody S. Lough

Doctoral Dissertations

“Laser Powder Bed Fusion (LPBF) metal Additive Manufacturing (AM) fabricates 3D metal parts layer-by-layer. The process enables production of geometrically complex parts that are difficult to inspect with traditional methods. The LPBF parts experience significant geometry driven thermal variations during manufacturing. This creates microstructure and mechanical property inhomogeneities and can stochastically cause defects. Mission critical applications require part qualification by measuring the defects non-destructively. The layer-to-layer nature of LPBF permits non-intrusive measurement of radiometric signals for a part’s entire volume. These measurements provide thermal features that correlate with the local part health. This research establishes Optical Emission Spectroscopy (OES) and …


Advanced Battery Modeling For Interfacial Phenomena And Optimal Charging, Yaqi Zhu Jan 2021

Advanced Battery Modeling For Interfacial Phenomena And Optimal Charging, Yaqi Zhu

Doctoral Dissertations

"Lithium-ion batteries are one of the most promising energy storage systems for portable devices, transportation, and renewable grids. To meet the increasing requirements of these applications, higher energy density and areal capacity, long cycle life, fast charging rate and enhanced safety for lithium-ion battery (LIBs) are urgently needed. To solve these challenges, the relevant physics at different length scale need to be understood. However, experimental study is time consuming and limited in small scale’s study. Modeling techniques provide us powerful tools to get a deep understanding of the relevant physics and find optimal solutions. This work focuses on studying the …


Prediction Of Battery Health Dynamics, Damola Martins Ajiboye Jan 2021

Prediction Of Battery Health Dynamics, Damola Martins Ajiboye

Doctoral Dissertations

"The successful market penetration of lithium-ion batteries in the last 30 years has ushered in a new dawn in energy applications. Notwithstanding their widespread use, lithium-ion batteries are affected by a plethora of fundamental issues — safety, cycle life, performance, and cost. In this work, advanced modeling techniques are developed to tackle some of these issues. This dissertation is subdivided into four parts, the first is introduction while the remaining are dedicated to the development of computational techniques for predicting battery health dynamics.

In the second part of this work, we developed fast and accurate algorithms for modeling essential battery …


Sources Of Quality Uncertainty In Laser Powder Bed Fusion Metal Additive Manufacturing, Zachary Young Jan 2021

Sources Of Quality Uncertainty In Laser Powder Bed Fusion Metal Additive Manufacturing, Zachary Young

Doctoral Dissertations

"Powder based additive manufacturing (AM) exhibits tremendous uncertainties, where variations in build quality is present despite utilizing similar build processing parameters. First, this work reports the features and formation mechanisms of five unique types of spatter during the LPBF process by in-situ high-speed, high-energy x-ray imaging. The unique physical characteristics of spatter are determined. The effect of laser scan speed and laser power on spatter formation, ejection, and mitigation are determined. Second, this work addresses the uncertainty challenge by identifying the sources of uncertainty in SLM by in-situ characterization due to variations from the additive manufacturing processing parameters needed for …


Fabrication, Characterization Of High-Entropy Alloys And Deep Learning-Based Inspection In Metal Additive Manufacturing, Wenyuan Cui Jan 2021

Fabrication, Characterization Of High-Entropy Alloys And Deep Learning-Based Inspection In Metal Additive Manufacturing, Wenyuan Cui

Doctoral Dissertations

"Alloying has been used to confer desirable properties to materials. It typically involves the addition of small amounts of secondary elements to a primary element. In the past decade, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high- entropy alloys (HEAs) has been in vogue. In the first part, the investigation focused on the fabrication process and property assessment of the additive manufactured HEA to broaden its engineering applications. Additive manufacturing (AM) is based on manufacturing philosophy through the layer-by-layer method and accomplish the near net-shaped components …


Thermomechanical Simulation And Process Optimization For Hot Rolling Of Steel, Shouvik Ganguly Jan 2021

Thermomechanical Simulation And Process Optimization For Hot Rolling Of Steel, Shouvik Ganguly

Doctoral Dissertations

"Hot rolling is a manufacturing process that involves large material deformation, complicated geometries, contact conditions and non-uniform temperature gradients. Steel industries are motivated to prevent hot rolled steel products to be defect free and with desired shape and size. In order to simulate the process accurately, it is essential that the material model for steel accounts for the viscoplasticity and changes in properties that occur in steel at elevated temperatures as grain growth and recrystallization.

The healing of existing voids during hot rolling was investigated using finite element simulations. Voids are highly undesirable as they not only degrade the product …


An Investigation Of Unsteady Thermal Exchange Processes In Geothermal Heat Exchangers, Ganesh Ravi Shanker Jan 2021

An Investigation Of Unsteady Thermal Exchange Processes In Geothermal Heat Exchangers, Ganesh Ravi Shanker

Doctoral Dissertations

“Geothermal heat exchangers, has become one of the highly recognized non conventional heat exchangers as they utilize renewable energy source earth to initiate the thermal energy transfer. However, these heat exchangers suffer from a expensive installation cost due to their conservative design model, thereby facilitating the need to identify and improve the design. In this dissertation, three gaps, which identifies improvement over conservative design were investigated, to assess the heat exchanger performance. In the first approach, borehole thermal and geometrical properties were investigated keeping the outlet leg of the heat exchanger as adiabatic, which neglects the thermal short-circuiting between the …


Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary Jan 2021

Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary

Masters Theses

“Ceramic On-Demand Extrusion (CODE) is a patented solid freeform fabrication method for manufacturing high-density monolithic ceramic parts. In the past 5-6 years, the technology has been successfully implemented to fabricate alumina and zirconia parts. The mechanical characterizations also show CODE’s high potential in achieving desired structural properties. The present study covers the fabrication of silicon nitride parts by CODE process, which entailed the design of paste formulation for achieving rheology suitable for dimensional control in fabricated parts and determining firing temperature and the content of sintering additives for silicon nitride green bodies fabricated by CODE. The density, hardness, and fracture …


Research And Development Of A Laser Hot Wire Deposition Process, Christopher Croft Jan 2021

Research And Development Of A Laser Hot Wire Deposition Process, Christopher Croft

Masters Theses

“Laser hot wire directed energy deposition (DED) is an increasingly popular method for improving deposition rates and overall reduction of build times in DED processing. While there is clear benefit, it is important to fully understand the impact of preheating the wire. This work focuses on developing a model that describes bead geometry output using all factors including the wire preheat. The model was fit with over 150 data points that explored a large range of each factor. The resulting model was then leveraged to evaluate a process control variable. The technique chosen used feedback from the hot wire system …


Variational Inference For Morphological Modification To 3d Geometry : An Application To The Support Generation For Metal Additive Manufacturing, Mugdha Swanand Joshi Jan 2021

Variational Inference For Morphological Modification To 3d Geometry : An Application To The Support Generation For Metal Additive Manufacturing, Mugdha Swanand Joshi

Masters Theses

"A key issue in metal additive manufacturing (AM) processes is the optimization of support geometry. Correct selection of support strategy can reduce build time, improve surface finish, reduce support removal time, and maximize build success. Strategies used to design support structure are time consuming and need skilled personnel. In this research we have deployed a deep generative model capable of making morphological modifications to the part. However, it is not similar to topology optimization where the aim is to reduce or eliminate support structure. The proposed model can make necessary changes to the part in order to transform it into …


Design And Development Of A Variable Resistance Hand Exerciser Using A Compliant Mechanism, Jyothi Komatireddy Jan 2021

Design And Development Of A Variable Resistance Hand Exerciser Using A Compliant Mechanism, Jyothi Komatireddy

Masters Theses

"Rehabilitation exercise plays a vital role in recovering from an injury or illness condition by improving flexibility and restoring muscle strength. If not done correctly, exercising can cause more damage to the health condition than in healing. Understanding the muscle’s resistance level while performing an exercise helps design the exercising equipment not to overstrain the muscle during operation. This research presents a methodology to develop a variable-resistance hand exerciser by using a compliant cam-follower mechanism. The proposed design comprised a compliant follower and a rigid cam. The rigid cam is synthesized using the human hand force-deflection profile as an input …


Fabrication Of 304l Stainless Steel And Aluminum Parts By Laser Foil Printing And Process Automation, Chia-Hung Hung Jan 2021

Fabrication Of 304l Stainless Steel And Aluminum Parts By Laser Foil Printing And Process Automation, Chia-Hung Hung

Doctoral Dissertations

"This work presents research conducted on a novel metal additive manufacturing process, called Laser Foil Printing (LFP), to fabricate metal parts with various geometries layer by layer using metal foil as the feedstock. To investigate the processability and characteristics of LFP for fabricating metal parts, the materials included 304L stainless steel and Al-1100 aluminum alloy. The LFP process parameter windows for both 304L and Al-1100 were determined, and the optimal process parameters with stable formation of the melt pools were selected to fabricate dense metal parts. The microstructure and properties of LFP-fabricated parts were characterized and analyzed using tensile testing, …


Physics-Based Modeling Of Lithium-Ion Batteries For Control And Estimation Applications, Brody J. C. Riemann Jan 2021

Physics-Based Modeling Of Lithium-Ion Batteries For Control And Estimation Applications, Brody J. C. Riemann

Masters Theses

“Lithium-ion batteries are extensively used in many application areas like consumer electronics, electric vehicles, and microgrids. As the world moves towards further electrification of vehicles and more widespread use of renewable energy sources, the need for large-scale battery storage systems will grow. To effectively replace conventional methods, batteries will need to be charged quickly while accounting for degradation to maximize lifetime. Further, larger batteries require more detailed safety monitoring, which is implemented using a battery management system (BMS). A BMS is responsible for state of charge (SOC) estimation, state of health (SOH) estimation, cell balancing, regulating voltage and current according …


Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …


Novel Piezo Actuators For Surface Cleaning, Yezad H. Anklesaria Jan 2021

Novel Piezo Actuators For Surface Cleaning, Yezad H. Anklesaria

Doctoral Dissertations

"Optical cameras are becoming increasingly common and are used in a variety of applications. With recent progress and transition toward more autonomous systems, the usage of optical systems will be common and widespread. Applications of the optical systems range from autonomous vehicles, home security systems, aviation, extraterrestrial vehicles, spacecraft, and satellites. Imaging systems are used in decision-making in many of these applications. Fouling of the field of view of the imaging system can impede the decision process. An active autonomous cleaning method for the optical surface of the optical systems reliably would be advantageous. The research work focuses on developing …


Theoretical Study Of Magnetic Particles In A Shear Flow Subjected To A Uniform Magnetic Field, Christopher A. Sobecki Jan 2021

Theoretical Study Of Magnetic Particles In A Shear Flow Subjected To A Uniform Magnetic Field, Christopher A. Sobecki

Doctoral Dissertations

"Magnetic manipulation of non-spherical magnetic microparticles is important for applications in shape-based and magnetic-based separations such as waste management, disease diagnostics, drug delivery, and mining. Manipulations of magnetic microparticles also include chain formation to assemble compositions for electronics, drug loading designs, and magnetorheological fluids for smart armor, hydraulic brakes, and dampers. In microfluidic devices, separation-formation-effectiveness depends on the shape of the channel, the shear rate, and the magnetic field strength and direction.

Particle separation and chain formation involved highly complex and computational expense-demanding studies in microfluidic devices, magnetic fields, and particle- particle/wall interactions. This research took complex experimental studies and …


Numerical And Experimental Study Of Mechanical Properties For Laser Metal Deposition (Lmd) Process Part, Lan Li Jan 2021

Numerical And Experimental Study Of Mechanical Properties For Laser Metal Deposition (Lmd) Process Part, Lan Li

Doctoral Dissertations

"Laser Metal Deposition (LMD), also called as, Laser Engineered Net Shaping (LENS), Directed Energy Deposition (DED), is a typical Additive Manufacturing (AM) technology, is used for advanced free-form fabrication. It creates parts by directly melting materials and depositing them on the workpiece layer by layer. In this process, the metal powder or fiber is melted within the melting pool by laser beam or electron beam and quickly solidifies to the deposited layer. LMD technology shows great advantages over traditional manufacturing on complex structure fabrication, including high building rates, easy material replacement and reduced material waste. These merits make the wide …


Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan Jan 2021

Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan

Doctoral Dissertations

Digital microfluidics in combination with emulsion microfluidics are crucial building blocks of droplet-based microfluidics, which are prevalent in a wide variety of industrial and biomedical applications, including polymer processing, food production, drug delivery, inkjet printing, and cell-based assays. Therefore, understanding the dynamics and interactions of droplets as well as the interactions between the droplets and solid surfaces are of great importance in order to improve the performance or product in these applications.

Recently, several studies in the literature have demonstrated the potential of magnetic fields in controlling the behavior of droplets in microscale; however, the fundamental mechanism behind the interesting …


Additively Manufactured Metallic Cellular Structures, Okanmisope Aziel Fashanu Jan 2021

Additively Manufactured Metallic Cellular Structures, Okanmisope Aziel Fashanu

Doctoral Dissertations

"Cellular structures are lightweight structures with excellent mechanical, thermal, and acoustic properties. They offer promise in a series of applications, including lightweight applications, sandwich cores, mechanical damping, acoustic absorption, strain isolation, and thermal management. The manufacturing of these complex cellular structures is expensive and time-consuming, which hinders the adoption of these structures in many industries. Advancement in manufacturing technologies, such as additive manufacturing (AM), however, have changed this. AM allows for the rapid and less expensive manufacturing of complex cellular structures. This work aimed to investigate the performance of additively manufactured cellular structures for lightweight and sandwich core applications. In …


Layer-To-Layer Feedback Control For Direct Energy Deposition Additive Manufacturing, Michelle Gegel Jan 2021

Layer-To-Layer Feedback Control For Direct Energy Deposition Additive Manufacturing, Michelle Gegel

Doctoral Dissertations

"Additive manufacturing (AM) has garnered much attention in recent years, some calling it the fourth industrial revolution. It was first used to create rapid prototypes, although recent efforts have been made to advance the technology towards production of functional parts. This requires advancement in the materials used in AM, as well as the ability to produce quality parts repeatably. More specifically, direct energy deposition (DED) of metal powders is a process capable of producing and repairing parts with complex geometries; however, it is not widely used in industry due to challenges with quality control. In this process, metal powder is …