Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Turbulence

Institution
Publication Year
Publication
Publication Type

Articles 61 - 87 of 87

Full-Text Articles in Engineering

Experimental Characterization Of Baffle Plate Influence On Turbulent And Cavitation Induced Vibrations In Pipe Flow, Gavin J. Holt Jun 2011

Experimental Characterization Of Baffle Plate Influence On Turbulent And Cavitation Induced Vibrations In Pipe Flow, Gavin J. Holt

Theses and Dissertations

Turbulent and cavitation induced pipe vibration is a large problem in industry often resulting in pipe failures. This thesis provides an experimental investigation on turbulent flow and cavitation induced pipe vibration caused by sharp edged baffle plates. Due to large pressure losses across a baffle plate, cavitation can result. Cavitation can be destructive to pipe flow in the form of induced pipe wall vibration and cavitation inception. Incipient and critical cavitation numbers are design points that are often used in designing baffle plate type geometries. This investigation presents how these design limits vary with the influencing parameters by exploring a …


Turbulence Modeling Of Strongly Heated Internal Pipe Flow Using Large Eddy Simulation, Michal Hradisky May 2011

Turbulence Modeling Of Strongly Heated Internal Pipe Flow Using Large Eddy Simulation, Michal Hradisky

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The main objective of this study was to evaluate the performance of three Large Eddy Simulation (LES) subgrid scale (SGS) models on a strongly heated, low Mach number upward gas flow in a vertical pipe with forced convection. The models chosen for this study were the Smagorinsky-Lilly Dynamic model (SLD), the Kinetic Energy Transport model (KET), and the Wall-Adaptive Local-Eddy viscosity model (WALE). The used heating rate was sufficiently large to cause properties to vary significantly in both the radial and streamwise directions. All simulations were carried out using the commercial software FLUENT.

The effect of inlet turbulence generation techniques …


Design, Fabrication And Characterization Of A New Wind Tunnel Facility – Linear Cascade With A Wake Simulator, Jean-Philippe Junca-Laplace Jan 2011

Design, Fabrication And Characterization Of A New Wind Tunnel Facility – Linear Cascade With A Wake Simulator, Jean-Philippe Junca-Laplace

LSU Master's Theses

A new wind tunnel has been designed and constructed at the LSU Mechanical Engineering Laboratories. The objective was to design a versatile test facility, suitable for a wide range of experimental measurements on turbine blades. The future study will investigate the impact of unsteady inflow conditions on film cooling performance. More specifically, it will study how the unsteady flow due to the upstream passing wakes coming from the front row vane affects the film cooling performances on the turbine blades. The test section consists of a four passage linear cascade composed of three full blades and two shaped wall blades. …


Effects Of A Heated Turbulent Boundary Layer On Surface Pressure Fluctuations, David William Rich Jan 2011

Effects Of A Heated Turbulent Boundary Layer On Surface Pressure Fluctuations, David William Rich

Electronic Theses and Dissertations

Recent work has shown that spatial correlation of surface pressure fluctuations in a fully turbulent atmospheric boundary layer (ABL) can give information about the velocity field and turbulence. This is of particular importance to the future of wind energy to predict the incoming velocity flow field of wind turbines so as to actively control them for peak operating efficiency and damage reduction. All of the environmental effects on the surface pressure fluctuations need to be fully understood before a suitable flow prediction algorithm can be constructed. One such environmental effect which has not been previously studied is the effect of …


A Study Of The Statistics Of The Air/Water Interfacial Temperature Field During Mixed Convection Heat Transfer, Jie Kou Dec 2010

A Study Of The Statistics Of The Air/Water Interfacial Temperature Field During Mixed Convection Heat Transfer, Jie Kou

All Dissertations

Heat transfer across an air/water interface is of particular importance to limnology, oceanography and some industrial applications. The relationship between the statistics of the air/water interfacial temperature field and the interfacial heat flux is poorly understood, particularly for the mixed convection condition, which is a common heat transfer mechanism for small inland lakes. The few studies that have been conducted under mixed convection conditions have been limited to an uncontrolled surfactant condition (tap water). Therefore, in this dissertation research two sets of experiments for wind speeds from 0 to 4 m/s were conducted: controlled surfactant contaminated conditions (with oleyl alcohol) …


Toward The Validation Of Depth-Averaged, Steady-State Simulations Of Fluvial Flows Using Three-Dimensional, Steady-State, Rans Turbulence Models, Pedro Abdiel Mateo Villanueva Dec 2010

Toward The Validation Of Depth-Averaged, Steady-State Simulations Of Fluvial Flows Using Three-Dimensional, Steady-State, Rans Turbulence Models, Pedro Abdiel Mateo Villanueva

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Calculations of fluvial flows are strongly influenced by geometry complexity and large overall uncertainty on every single measurable property, such as velocity and shear. Moreover, a considerable portion of the data obtained from computational simulations arose from two-dimensional, steady-state models. The present work states a different approach to perform computer-based simulations and analyze fluvial flows. For the first part, the suitability of OpenFOAM to be used as the main CFD solver to analyze fluvial flows is studied. Initially, two well documented channel configurations are computationally studied using OpenFOAM. Finally, these results are compared to the output obtained from one of …


Macroinstability And Perturbation In Turbulent Stirred Tank Flows, Somnath Roy Jan 2010

Macroinstability And Perturbation In Turbulent Stirred Tank Flows, Somnath Roy

LSU Doctoral Dissertations

Impeller stirred tank reactors (STRs) are commonly used in the chemical processing industries for a variety of mixing and blending technologies. In this research, a numerical study of flow and mixing inside turbulently agitated STRs are carried out. An immersed boundary method (IBM) is utilized to represent moving impeller geometries in the background of multi-block structured curvilinear fluid. The IBM This curvilinear-IBM methodology is further combined with the large eddy simulation (LES) technique to address the issue of modeling unsteady turbulent flows in the STR. Verification of the combined IBM-LES implementation strategy in curvilinear coordinates is done through comparisons with …


Experimental Characterization Of Flow Induced Vibration In Turbulent Pipe Flow, Andrew S. Thompson Aug 2009

Experimental Characterization Of Flow Induced Vibration In Turbulent Pipe Flow, Andrew S. Thompson

Theses and Dissertations

This thesis presents results of an experimental investigation that characterizes the wall vibration of a pipe with turbulent flow passing through it. Specifically, experiments were conducted using a water flow loop to address three general phenomena. The topics of investigation were: 1) How does the pipe wall vibration depend on the average flow speed, pipe diameter, and pipe thickness for an unsupported pipe? 2) How does the behavior change if the pipe is clamp supported at various clamping lengths? 3) What influence does turbulence generation caused by holed baffle plates exert on the pipe response? A single pipe material (PVC) …


Analysis Of Induced Vibrations In Fully-Developed Turbulent Pipe Flow Using A Coupled Les And Fea Approach, Thomas P. Shurtz Aug 2009

Analysis Of Induced Vibrations In Fully-Developed Turbulent Pipe Flow Using A Coupled Les And Fea Approach, Thomas P. Shurtz

Theses and Dissertations

Turbulent flow induced pipe vibration is a phenomenon that has been observed but not fully characterized. This thesis presents research involving numerical simulations that have been used to characterize pipe vibration resulting from fully developed turbulent flow. The vibration levels as indicated by: pipe surface displacement, velocity, and acceleration are characterized in terms of the parameters that exert influence. The influences of geometric and material properties of the pipe are investigated for pipe thickness in the range 1 to 8 mm at a diameter of 0.1015 m. The effects of pipe elastic modulus are explored from 3 to 200 GPa. …


Effect Of Rib Turbulators On Heat Transfer Performance In Stationary Ribbed Channels, Aravind Rohan Sampath Jan 2009

Effect Of Rib Turbulators On Heat Transfer Performance In Stationary Ribbed Channels, Aravind Rohan Sampath

ETD Archive

The thermal performance was examined computationally for the stationary channels with rib turbulators oriented at 90 degrees. Ribs were placed on opposite walls and the heat transfer coefficients and frictional loss were calculated. Three stationary channels with aspect ratios (W/H) 1, 2 and 4 were considered for the analysis. The thermal performance was measured by calculating the Nusselt number and frictional losses. Square ribs (w/e = 1) were considered as the baseline configuration. The rib width and rib spacing varies while the rib height is maintained constant. Rib spacing (P/e) of 10 and 20 and rib width to rib height …


Computational And Experimental Investigation Of The Flow Structure And Vortex Dynamics In The Wake Of A Formula 1 Tire, John Axerio, Gianluca Iaccarino, Emin Issakhanian, Chris Elkins, John Eaton Jan 2009

Computational And Experimental Investigation Of The Flow Structure And Vortex Dynamics In The Wake Of A Formula 1 Tire, John Axerio, Gianluca Iaccarino, Emin Issakhanian, Chris Elkins, John Eaton

Mechanical Engineering Faculty Works

The flowfield around a 60% scale stationary Formula 1 tire in contact with the ground in a closed wind tunnel was examined experimentally in order to assess the accuracy of different turbulence modeling techniques. The results of steady RANS and Large Eddy Simulation (LES) were compared with PIV data, which was obtained within the same project. The far wake structure behind the wheel was dominated by two strong counter-rotating vortices. The locations of the vortex cores, extracted from the LES and PIV data as well as computed using different RANS models, showed that the LES predictions are closest to the …


Introductory Lectures On Turbulence: Physics, Mathematics And Modeling, James M. Mcdonough Jan 2007

Introductory Lectures On Turbulence: Physics, Mathematics And Modeling, James M. Mcdonough

Mechanical Engineering Textbook Gallery

From Chapter 1:

The understanding of turbulent behavior in flowing fluids is one of the most intriguing, frustrating— and important—problems in all of classical physics.

The problem of turbulence has been studied by many of the greatest physicists and engineers of the 19th and 20th Centuries, and yet we do not understand in complete detail how or why turbulence occurs, nor can we predict turbulent behavior with any degree of reliability, even in very simple (from an engineering perspective) flow situations. Thus, study of turbulence is motivated both by its inherent intellectual challenge and by the practical utility of a …


Turbulence Modeling For Film Cooling Flows, Asif Hoda Jan 2007

Turbulence Modeling For Film Cooling Flows, Asif Hoda

LSU Doctoral Dissertations

An improved two equation turbulence model has been developed in this dissertation to better predict the complex film cooling flow field that is formed from the interaction of a coolant jet and a crossflow over a modeled turbine blade surface. Film cooling of turbine blades is commonly employed to effectively protect turbine blades from thermal failure and thereby to allow higher inlet temperatures in order to increase the efficiency of gas turbine engines. Film cooling involves the injection of rows of coolant jets from slots on the surface of a turbine blade which is then bent over by the crossflow …


Developing Dns Tools To Study Channel Flow Over Realistic Plaque Morphology, Ryan M. Beaumont Jan 2007

Developing Dns Tools To Study Channel Flow Over Realistic Plaque Morphology, Ryan M. Beaumont

Electronic Theses and Dissertations

In a normal coronary artery, the flow is laminar and the velocity is parabolic in nature. Over time, plaques deposit along the artery wall, narrowing the artery and creating an obstruction, a stenosis. As the stenosis grows, the characteristics of the flow change and transition occurs, resulting in turbulent flow distal to the stenosis. To date, direct numerical simulation (DNS) of turbulent flow has been performed in a number of studies to understand how stenosis modifies flow dynamics. However, the effect of the actual shape and size of the obstruction has been disregarded in these DNS studies. An ideal approach …


Numerical Simulation Of Plasma-Based Actuator Vortex Control Of A Turbulent Cylinder Wake, Nathan Keith Mcmullin Sep 2006

Numerical Simulation Of Plasma-Based Actuator Vortex Control Of A Turbulent Cylinder Wake, Nathan Keith Mcmullin

Theses and Dissertations

A numerical study has been performed to investigate the mechanics of the turbulent wake of a circular cylinder that is controlled by a plasma actuator. The numerical investigation implements a straightforward moving wall boundary condition to model the actuator's effects on the flow. Validations of the moving wall for this simulation are set forth with the understanding that the moving wall can model the plasma actuator bulk flow effects at a distance downstream and not in a region near or on the plasma actuator. The moving wall boundary condition is then applied to a circular cylinder at a Reynolds number …


A Lagrangian Stochastic Model For Dispersion In Stratified Turbulence, S. K. Das, Paul A. Durbin Jan 2005

A Lagrangian Stochastic Model For Dispersion In Stratified Turbulence, S. K. Das, Paul A. Durbin

Paul A. Durbin

In this paper we discuss the development of a Lagrangian stochastic model (LSM) for turbulent dispersion of a scalar (species). Given any tensorally linear second-moment closure (SMC) turbulence model we show how to derive a mathematically equivalent set of stochastic differential equations (SDEs), i.e., the second-moment equations constructed from these SDEs are exactly the same (within a realizability constraint) as the given SMC. This set of equations forms the LSM. Both turbulence anisotropy and buoyancy effects are incorporated by this method. In order to achieve the correct critical Richardson number and to obtain the simplest Lagrangian formulation, a revised set …


Large Eddy Simulation Based Turbulent Flow-Induced Vibration Of Fully Developed Pipe Flow, Matthew Thurlow Pittard Oct 2003

Large Eddy Simulation Based Turbulent Flow-Induced Vibration Of Fully Developed Pipe Flow, Matthew Thurlow Pittard

Theses and Dissertations

Flow-induced vibration caused by fully developed pipe flow has been recognized, but not fully investigated under turbulent conditions. This thesis focuses on the development of a numerical Fluid-Structure Interaction (FSI) model that will help define the relationship between pipe wall vibration and the physical characteristics of turbulent flow. Commercial FSI software packages are based on Reynolds Averaged Navier-Stokes (RANS) fluid models, which do not compute the instantaneous fluctuations in turbulent flow. This thesis presents an FSI approach based on Large Eddy Simulation (LES) flow models, which do compute the instantaneous fluctuations in turbulent flow. The results based on the LES …


Effect Of Unsteady Wake, Free Stream Turbulence, Tip Geometry On Blade Tip Flow And Heat Transfer, Vikrant Saxena Jan 2003

Effect Of Unsteady Wake, Free Stream Turbulence, Tip Geometry On Blade Tip Flow And Heat Transfer, Vikrant Saxena

LSU Master's Theses

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer. The linear cascade is made of four blades scaled up HPT turbine in a low speed wind tunnel facility with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116 degree turn in the flow through the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83e5. The center blade …


Numerical Investigation Of Flow Through Wide Angle Diffusers, Moududur Rahman Jan 1994

Numerical Investigation Of Flow Through Wide Angle Diffusers, Moududur Rahman

Dissertations

This study is aimed at the development of a computational technique for the prediction of the flow field in wide angle diffusers. The finite element technique is used for the solution of the governing equations. A commercial software package, NISA/3DFlUID, modified for this specific application was used. The parameters affecting the flow field have been identified. For a wide range of variation of these parameters, the effects on the flow field have been examined. This investigation is an exhaustive and comprehensive numerical study of diffuser flows. Such a study will result in substantial improvement in the understanding of the anatomy …


An Investigation Of The Formation Of Turbulent Water And Abrasive Water Jets, Md. Ekramul Hasan Khan Jan 1994

An Investigation Of The Formation Of Turbulent Water And Abrasive Water Jets, Md. Ekramul Hasan Khan

Dissertations

This study is concerned with the development of a knowledge base for the selection of nozzle geometry by investigating the mechanism of formation and behaviors of water and abrasive water jets. A numerical prediction of turbulent water flow inside various nozzles is developed. The analysis is based on the numerical solution of conservation equations of continuity and momentum as well as equations of turbulent kinetic energy and dissipation for 2-dimensional axisymmetric flow by using a finite element package, FIDAP.

The technique for determining velocities and forces of water jet and abrasive water jet with the Laser Transit Anemometer and Piezoelectric …


Experimental Investigation Of The Effects Of Blowing Ratio Parameter On Heat Transfer To A Film-Cooled Flat Plate, Marco R. Valencia Jun 1993

Experimental Investigation Of The Effects Of Blowing Ratio Parameter On Heat Transfer To A Film-Cooled Flat Plate, Marco R. Valencia

Theses and Dissertations

The effects of blowing ratio on film cooling effectiveness were investigated. Two round-nosed test plates were used. One made of aluminum and the second of corian (low thermal conductivity). Injection at 35 degrees in the downstream direction was studied. Helium was mixed with air to produce a density ratio (coolant to mainstream) of 1.6 and 2.0, while the blowing ratio varied from 0.3 to 2.2. Surface temperature was measured by thin film gages located up to a nondimensional downstream distance X/D of 30. Two injection regimes, weak and strong, were found. In the weak regime, film cooling reduced gage heat …


Runge-Kutta Upwind Multigrid Multi-Block Three-Dimensional Thin Layer Navier-Stokes Solver, Frank E. Cannizzaro Jul 1992

Runge-Kutta Upwind Multigrid Multi-Block Three-Dimensional Thin Layer Navier-Stokes Solver, Frank E. Cannizzaro

Mechanical & Aerospace Engineering Theses & Dissertations

A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, Upwind numerical techniques, Multigrid acceleration, and Multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available, van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multigrid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with …


Liquid Immersion Cooling Of A Longitudinal Array Of Discrete Heat Sources In Protruding Substrates: I—Single-Phase Convection, Theodore J. Heindel, F. P. Incropera, S. Ramadhyani Mar 1992

Liquid Immersion Cooling Of A Longitudinal Array Of Discrete Heat Sources In Protruding Substrates: I—Single-Phase Convection, Theodore J. Heindel, F. P. Incropera, S. Ramadhyani

Theodore J. Heindel

Experiments have been performed using water and FC-77 to investigate heat transfer from an in-line 1 x 10 array of discrete heat sources, flush mounted to protruding substrates located on the bottom wall of a horizontal flow channel. The data encompass flow regimes ranging from mixed convection to laminar and turbulent forced convection. Buoyancy-induced secondary flows enhanced heat transfer at downstream heater locations and provided heat transfer coefficients comparable to upstream values. Upstream heating extended enhancement on the downstream heaters to larger Reynolds numbers. Higher Prandtl number fluids also extended heat transfer enhancement to larger Reynolds numbers, while a reduction …


A Similarity Model For Flow In A Turbulent Boundary Layer, Earl Clark Lemmon May 1968

A Similarity Model For Flow In A Turbulent Boundary Layer, Earl Clark Lemmon

Theses and Dissertations

One of the basic goals in engineering is to generate models which will provide a means for analytically predicting observed phenomenon. Such a model is often modified several times to obtain better results. The purpose of this study was to generate a model for an equilibrium turbulent boundary layer for steady flow over a flat plate and compare the results obtained by using the model with experimental data. Part of the objective was to also suggest ways in which the model could be modified to obtain better results.


Transition From Laminar To Turbulent Flow For Dilute Guar Gum Solutions, Martin L. Palmer May 1968

Transition From Laminar To Turbulent Flow For Dilute Guar Gum Solutions, Martin L. Palmer

Theses and Dissertations

Solutions of many natural and synthetic polymers have been found to reduce turbulent friction losses in flow through pipes. The basic mechanism causing these reductions is not entirely understood although two general theories have been advanced.


The Aerodynamic Drag On Spheres Under Acceleration, Charles Earl Nielson Aug 1963

The Aerodynamic Drag On Spheres Under Acceleration, Charles Earl Nielson

Theses and Dissertations

The requirement of a greater understanding of the behavior of solids-gas systems has shown itself profoundly with the advancement of science and technology during recent years. The range and variety of processes in which these systems play an important role is exceptionally broad. These processes range from meteorological disturbances such as dust storms, rain and snow, to the use of vacuum cleaning equipment. With the advancement of aircraft and space technology the influence of these systems is again felt in such cases as the motion of rockets, missiles and aircraft in flight, the behavior of liquid droplets or metallic particles …


The Verification And Use Of A Hot-Wire Anemometer In Turbulence Measurements, Charles Young Warner Aug 1963

The Verification And Use Of A Hot-Wire Anemometer In Turbulence Measurements, Charles Young Warner

Theses and Dissertations

One very important part of research is the development of effective, reliable instruments. The measurement of turbulence in flow fields is a complex research problem. It depends heavily upon the hot-wire anemometer. This thesis describes the evaluation and use of a constant- current hot-wire anemometer, and presents the equations governing its use for turbulence measurements. The thesis first enumerates and explains some of the important parameters of turbulent flows, providing the basis for the discussion of their measurement which follows. The cooling of a heated wire in forced convection and a typical anemometer circuit are discussed. Derivations of the instrument …