Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

A Platform For Fast Detection Of Let-7 Micro Rna Using Polyaniline Fluorescence And Image Analysis Techniques, Partha P. Sengupta Dec 2015

A Platform For Fast Detection Of Let-7 Micro Rna Using Polyaniline Fluorescence And Image Analysis Techniques, Partha P. Sengupta

Master's Theses

The project describes a new strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10-11 M (10 pM) of target oligonucleotides could be detected within 15 minutes of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to …


Effects Of Expected Service Life Exposures On The Functional Properties And Impact Performance Of An American Football Helmet Outer Shell Material, David E. Krzeminski Dec 2015

Effects Of Expected Service Life Exposures On The Functional Properties And Impact Performance Of An American Football Helmet Outer Shell Material, David E. Krzeminski

Dissertations

The purpose of this dissertation is to gain a greater scientific understanding of the changes in functional material properties and impact performance of an American football helmet outer shell material under expected service life exposures. The research goals are to (i) quantify chemical, physical, thermal, and mechanical degradation of an American football outer shell material under expected environmental conditions and (ii) develop a linear drop test impact protocol to employ expected on-field impact conditions to American football helmet components and a plaque-foam (i.e., shell-liner) surrogate. Overall, a step-wise progression of analysis was demonstrated to concurrently quantify and understand changes in …


Hybrid Aryl-Ether-Ketone And Hyperbranched Epoxy Networks, John Misasi Dec 2015

Hybrid Aryl-Ether-Ketone And Hyperbranched Epoxy Networks, John Misasi

Dissertations

In this dissertation, relationships between chemical structures, cure kinetics and network architectures are correlated to bulk mechanical properties for novel, hybrid epoxy-amine networks. The work is split into two primary sections: the first is the synthesis and characterization of multifunctional glassy networks based on aryl-ether-ketone diamine curatives, while the second is based on the synthesis and characterization of hyperbranched epoxy polymers and their resulting networks.

Three aryl-ether-ketone (AEK) diamines of increasing molecular weights were synthesized and used to cure 4,4’-tetraglycidylether of diaminodiphenylmethane (TGDDM); the resulting networks were compared to 4,4’-diaminodiphenyl sulfone cured TGDDM. Architectural differences were created by varying cure …


Polyacrylonitrile Copolymers: Effects Of Molecular Weight, Polydispersity, Composition, And Sequencing On Thermal Ring-Closing Stabilization, Jeremy D. Moskowitz Dec 2015

Polyacrylonitrile Copolymers: Effects Of Molecular Weight, Polydispersity, Composition, And Sequencing On Thermal Ring-Closing Stabilization, Jeremy D. Moskowitz

Dissertations

Controlled polyacrylonitrile (PAN)-based carbon fiber precursors with defined molecular weights, polydispersities, compositions, and architectures have been prepared for their study on thermal ring-closing stabilization behavior. PAN and its copolymers of number average molecular weights exceeding 170,000 g/mol were successfully synthesized via low temperature reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerizations of PAN-based precursors were compared to conventional free radical solution polymerizations with a focus on the effects of molecular weight and polydispersity on structural evolution and cyclization efficiency. When RAFT polymerization was extended to copolymers, it was found that RAFT copolymers achieved greater cyclization intensities and improved thermal stability …


Development Of Dual-Cure Hybrid Polybenzoxazine Thermosets, Jananee Narayanan Sivakami Dec 2015

Development Of Dual-Cure Hybrid Polybenzoxazine Thermosets, Jananee Narayanan Sivakami

Dissertations

Polybenzoxazines are potential high performance thermoset replacements for traditional phenolic resins that can undergo an autocatalytic, thermally initiated ring - opening polymerization, and possess superior processing advantages including excellent shelf-life stability, zero volatile loss and limited volumetric shrinkage. The simplistic monomer synthesis and availability of a wide variety of inexpensive starting materials allows enormous molecular design flexibility for accessing a wide range of tailorable material properties for targeted applications. Despite the fact, once fully cured, benzoxazines are difficult to handle due to their inherent brittleness, leaving a very little scope for any modifications. The motivation of this dissertation is directed …


Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin Aug 2015

Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin

Master's Theses

Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements.

Organic thin films can be readily …


Material Coefficient Of Thermal Expansion Investigation For Use In Additive Manufacturing Fused Deposition Modeling For Composite Tooling, Daniel Joseph Miller May 2015

Material Coefficient Of Thermal Expansion Investigation For Use In Additive Manufacturing Fused Deposition Modeling For Composite Tooling, Daniel Joseph Miller

Master's Theses

Polymer matrix composites are being used to manufacture light weight, high stiffness aircraft structures. These structures are often manufactured from carbon fiber reinforced epoxy. When these structures are damaged, they must be repaired to restore strength to the component to avoid the cost and logistics of having replacements parts. Occasionally, these repairs require tooling in order to make a quality repair, however, tooling generally has a long lead time. Additive manufacturing could be used to manufacture rapid tooling to create tooling for composite repairs. The issue is that polymer printed tooling has a much higher coefficient of thermal expansion (CTE) …


Cure Kinetics, Morphologies, And Mechanical Properties Of Thermoplastic/Mwcnt Modified Multifunctional Glassy Epoxies Prepared Via Continuous Reaction Methods, Xiaole Cheng May 2015

Cure Kinetics, Morphologies, And Mechanical Properties Of Thermoplastic/Mwcnt Modified Multifunctional Glassy Epoxies Prepared Via Continuous Reaction Methods, Xiaole Cheng

Dissertations

The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption.

In order to prove this concept, polyethersulfone (PES) modified 4, 4’-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4’-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain …