Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 1042

Full-Text Articles in Engineering

Creep And Oxidation Of Hafnium Diboride-Based Ultra High Temperature Ceramics At 1500°C, Anthony J. Degregoria Dec 2015

Creep And Oxidation Of Hafnium Diboride-Based Ultra High Temperature Ceramics At 1500°C, Anthony J. Degregoria

Theses and Dissertations

Ultra high temperature ceramics (UHTCs) are leading candidates for aerospace structural applications in high temperature environments, including the leading edges of hypersonic aircraft and thermal protection systems for atmospheric re-entry vehicles. Before UHTCs can be used in such applications, their structural integrity and environmental durability must be assured, which requires a thorough understanding and characterization of their creep and oxidation behavior at relevant service temperatures.


Carbon Aerogel/Nickel Foam As Electrode For High-Performance Supercapacitor, Zhong Wu, Xin-Bo Zhang Dec 2015

Carbon Aerogel/Nickel Foam As Electrode For High-Performance Supercapacitor, Zhong Wu, Xin-Bo Zhang

Journal of Electrochemistry

Herein, a facile synthesis has been explored to prepare carbon aerogel/Ni foam. Graphene oxide, resorcinol and formaldehyde serve as precursors and polymerize in-situ on the Ni foam after hydrothermal synthesis at 85 oC. After lyophilization treatment, the carbon aerogel/Ni foam with porous structure can be obtained. Electrochemical investigations reveal that the carbon aerogel/Ni foam exhibits superior performances in both aqueous and organic electrolytes involving high specific capacitance and long-term cycling stability. The excellent properties can be ascribed to the unique formation and porous structure, which allows more effective transportations of electron and electrolyte ion.


Fast And Accurate Evaluation Of Lifepo4 Cathode Materials By Single Particle Microelectrode, Fu-Qing Wang, Yi-Min Wei, Yu-Zhuan Su, Bing-Wei Mao, Kai Wu, Feng-Gang Zhao, Chun-Lei Chen, Xing-Lu Li, Jin Chong Dec 2015

Fast And Accurate Evaluation Of Lifepo4 Cathode Materials By Single Particle Microelectrode, Fu-Qing Wang, Yi-Min Wei, Yu-Zhuan Su, Bing-Wei Mao, Kai Wu, Feng-Gang Zhao, Chun-Lei Chen, Xing-Lu Li, Jin Chong

Journal of Electrochemistry

Single particle microelectrode enables to evaluate the electrochemical responses for single particle of active material without binder and conductive agent. Thus, the influences of additive and electrode structure on the electrochemical performance of active materials can be ignored. Furthermore, this technology can be used to evaluate active materials fast. Therefore, single particle microelectrode allows fast and accurate determination of the intrinsic performance of active material. Cyclic voltammogram (CV), cycle performance, and kinetic behavior of LiFePO4 cathode materials were evaluated by the single particle microelectrode. CV curve of LiFePO4 particle with a pair of oxidation and reduction peaks was obtained with …


Special Issue: Electrochemistry Of Carbon Materials, Chen Wei Dec 2015

Special Issue: Electrochemistry Of Carbon Materials, Chen Wei

Journal of Electrochemistry

Carbon materials are traditional electrode materials due to their excellent electrical conductivities, high electrochemical stabilities and wide potential windows. Glassy carbon, graphite, various activated charcoals, carbon fibers etc. have been widely used in electrochemistry serving as electrode substrates or supports. In addition to their applications in basic electrochemistry, carbon materials have also played important roles in electrochemical energy storage and conversion. In recent years, various types of carbon structures, from zero-dimensional carbon nanodots, one-dimensional nanotubes, two-dimensional graphene to three-dimensional porous carbons, have attracted increasing attention in electrochemical field. It has been found that carbon materials have outstanding properties as advanced …


Applications Of Carbon Materials In Electrochemical Energy Storage, Ji Liang, Lei Wen, Hui-Ming Cheng, Feng Li Dec 2015

Applications Of Carbon Materials In Electrochemical Energy Storage, Ji Liang, Lei Wen, Hui-Ming Cheng, Feng Li

Journal of Electrochemistry

An electrode material for electrochemical energy storage is one of the key components for high performance devices. In a variety of electrochemical energy storage systems, carbon materials, especially the lately emerged carbon nanomaterials including the carbon nanotube and graphene, have been playing a very important role and brought new vitality to the development and demonstration of the broad application prospects. In this review, we summarize the applications of various carbon materials in the typical electrochemical energy storage devices, namely lithium/sodium ion batteries, supercapacitors, and lithium-sulfur batteries, as well as flexible electrochemical energy storage and electrochemical catalysis. A perspective of novel …


Colloidal Ionic Supercapacitors, Kun-Feng Chen, Dong-Feng Xue Dec 2015

Colloidal Ionic Supercapacitors, Kun-Feng Chen, Dong-Feng Xue

Journal of Electrochemistry

Supercapacitors have high power density and long cycle life compared with battery systems, but they still suffer from low energy density at the same time. In order to increase the energy density of supercapacitors, we have developed a new type of pseudocapacitor, called colloidal ion supercapacitor, which can directly use commercial metal salts as electrode materials and form electroactive matter by in-situ electrochemical reactions without the need of additional materials synthesis processes. Colloidal ion supercapacitor can fully utilize the redox reaction of metal cations with multiple oxidation states, which can completely release the stored electrical energy of multiple-valence cations, leading …


Progress Of Self-Supported Supercapacitor Electrode Materials Based On Carbon Substrates, Shui-Jian He, Wei Chen Dec 2015

Progress Of Self-Supported Supercapacitor Electrode Materials Based On Carbon Substrates, Shui-Jian He, Wei Chen

Journal of Electrochemistry

Self-supported electrode materials have been widely used in supercapacitors. Carbon materials are promising substrates in building self-supported electrode materials attributed to their diverse structures, rich resource, relatively low cost and high stability. Combined with our own research in this field, we summarize here the recent progress on the synthesis of self-supported electrode materials and their supercapacitance properties. The overall synthetic strategy could be divided into two categories: “top-down” and “bottom-up”. We hope this review is helpful for the development and application of renewable sources in self-supported electrode materials.


Electrodeposition Of Lanthanum In Deep Eutectic Solvents, Li Wang, You-Jun Fan, Lu Wei, Hai-Xia Liu, Shi-Gang Sun Dec 2015

Electrodeposition Of Lanthanum In Deep Eutectic Solvents, Li Wang, You-Jun Fan, Lu Wei, Hai-Xia Liu, Shi-Gang Sun

Journal of Electrochemistry

With the choline chloride/urea deep eutectic solvents (DESs) as the medium, the olive-like lanthanum particles with uniform shape and size were successfully prepared through a potentiostatic deposition method. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). At the same time, the effect of deposition potential, temperature and time on the size and morphology of samples was investigated. The results demonstrated that the optimum conditions for the preparation of olive-like lanthanum particles were as follows: deposition potential of -1.7 V, temperature of 80 oC …


Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang Dec 2015

Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang

Journal of Electrochemistry

Owning to sodium’s high abundance, relatively low cost, similar chemical properties to Li and very suitable redox potential of E0(Na+/Na) = -2.71 V versus SHE which is only 0.3 V above that of lithium, rechargeable sodium ion battery hold much promise as potential alternatives to current lithium ion batteries for energy storage applications. Carbon material is regarded as the most promising anode candidate for sodium ion battery. Particularly, carbon nanosheet with porous structure and high conductivity is expected to have improved sodium ion storage properties. In this paper, we present a two-step pyrolysis-based method for facile synthesis of porous carbon …


Effect Of Mno2 Content On Electrochemical Capacitance Behavior Of Active Carbon Electrode, Kun Shen, Xian-Liang Zhou, Qi-Shun Duan Dec 2015

Effect Of Mno2 Content On Electrochemical Capacitance Behavior Of Active Carbon Electrode, Kun Shen, Xian-Liang Zhou, Qi-Shun Duan

Journal of Electrochemistry

In this work, the manganese dioxide (MnO2) materials were prepared by solution approach at low temperature, thermal decomposition and electrochemical deposition. The actived carbon (AC) and MnO2 composite electrodes were used for aqueous supercapacitors. The morphologies and structures of the prepared materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the electrochemical behaviors were tested by cyclic voltammetry (CV) and galanostatic charge-discharge tests. Electrochemical test data show that the maximum specific capacitances of 151, 172 and 141 F•g-1 were obtained with the contents of MnO2 being 70, 60 and 70% in …


Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio Dec 2015

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio

Nebraska Center for Energy Sciences Research: Publications

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case …


Novel Iron-Based Ternary Amorphous Oxide Semiconductor With Very High Transparency, Electronic Conductivity, And Mobility, A. Malasi, H. Taz, M. Patel, B. Lawrie, R. Pooser, A. Baddorf, G. Duscher, Ramki Kalyanaraman Dec 2015

Novel Iron-Based Ternary Amorphous Oxide Semiconductor With Very High Transparency, Electronic Conductivity, And Mobility, A. Malasi, H. Taz, M. Patel, B. Lawrie, R. Pooser, A. Baddorf, G. Duscher, Ramki Kalyanaraman

Faculty Publications and Other Works -- Materials Science & Engineering

Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This …


Magnetic Transitions In Disordered Gdal2, D. Williams, Paul Shand, Thomas Pekarek, Ralph Skomski, Valeri Petkov, Diandra Leslie-Pelecky Dec 2015

Magnetic Transitions In Disordered Gdal2, D. Williams, Paul Shand, Thomas Pekarek, Ralph Skomski, Valeri Petkov, Diandra Leslie-Pelecky

Thomas M. Pekarek

The role of disorder in magnetic ordering transitions is investigated using mechanically milled GdAl2. Crystalline GdAl2 is a ferromagnet while amorphous GdAl2 is a spin glass. Nanostructured GdAl2 shows a paramagnetic-to-ferromagnetic transition and glassy behavior, with the temperature and magnitude of each transition dependent on the degree and type of disorder. Disorder is parametrized by a Gaussian distribution of Curie temperatures TC with mean TC and breadth Δ TC. A nonzero coercivity is observed at temperatures more than 20 K above the highest TC of any known Gd-Al phase; however, the coercivity decreases with decreasing temperature over the same temperature …


High Capacity Silicon Electrodes With Nafion As Binders For Lithium-Ion Batteries, Jiagang Xu, Qinglin Zhang, Yang-Tse Cheng Dec 2015

High Capacity Silicon Electrodes With Nafion As Binders For Lithium-Ion Batteries, Jiagang Xu, Qinglin Zhang, Yang-Tse Cheng

Chemical and Materials Engineering Faculty Publications

Silicon is capable of delivering a high theoretical specific capacity of 3579 mAh g−1 which is about 10 times higher than that of the state-of-the-art graphite based negative electrodes for lithium-ion batteries. However, the poor cycle life of silicon electrodes, caused by the large volumetric strain during cycling, limits the commercialization of silicon electrodes. As one of the essential components, the polymeric binder is critical to the performance and durability of lithium-ion batteries as it keeps the integrity of electrodes, maintains conductive path and must be stable in the electrolyte. In this work, we demonstrate that electrodes consisting of …


Evolution Of Non-Metallic Inclusions In Foundry Steel Casting Processes, Marc Harris, Von Richards, Ronald J. O'Malley, Semen Naumovich Lekakh Dec 2015

Evolution Of Non-Metallic Inclusions In Foundry Steel Casting Processes, Marc Harris, Von Richards, Ronald J. O'Malley, Semen Naumovich Lekakh

Materials Science and Engineering Faculty Research & Creative Works

The evolution of nonmetallic inclusions was examined for 4320 steel at an industrial steel foundry. The steel was followed from electric arc furnace melting through ladle refining to final casting. Timed sampling was performed at all stages of the process. Samples were analyzed using an automated SEM/EDS system. The overall evolution of oxide inclusions in terms of nucleation, growth, and flotation during liquid processing was studied using area fraction and average diameter. Chemical composition evolution was observed using a joint ternary plotting tool developed under this program. It was found that the use of zirconium as an addition for nitrogen/oxygen …


Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham Dec 2015

Getting To The Root Of Bacterial Hairs: What Is “S”?, Rebecca Gaddis, Samantha O'Conner, Evan Anderson, Terri Camesano, Nancy Burnham

Nancy A. Burnham

An atomic force microscope (AFM) was used to measure the steric forces of lipopolysaccharides (LPS) on the biofilm-forming bacteria, Pseudomonas aeruginosa. It is well known that LPS play a vital role in biofilm formation. These forces were characterized with a modified version of the Alexander and de Gennes (AdG) model for polymers, which is a function of equilibrium brush length, L, probe radius, R, temperature, T, separation distance, D, and an indefinite density variable, s. This last parameter was originally distinguished by de Gennes as the root spacing or mesh spacing depending upon the type of polymer adhesion; however since …


Disorder-Induced Depression Of The Curie Temperature In Mechanically Milled Gdal2, Marco Morales Torres, D. Williams, Paul Shand, C. Stark, Thomas Pekarek, L. Yue, Valeri Petkov, Diandra Leslie-Pelecky Dec 2015

Disorder-Induced Depression Of The Curie Temperature In Mechanically Milled Gdal2, Marco Morales Torres, D. Williams, Paul Shand, C. Stark, Thomas Pekarek, L. Yue, Valeri Petkov, Diandra Leslie-Pelecky

Thomas M. Pekarek

The effect of disorder on the ferromagnetic transition is investigated in mechanically milled GdAl2. GdAl2is a ferromagnet when crystalline and a spin glass when amorphous. Mechanical milling progressively disorders the alloy, allowing observation of the change from ferromagnetic to a disordered magnetic state. X-ray diffraction and pair-distribution-function analysis are used to determine the grain size, lattice parameter, and mean-squared atomic displacements. The magnetization as a function of temperature is described by a Gaussian distribution of Curie temperatures. The mean Curie temperature decreases with decreasing lattice parameter, where lattice parameter serves as a measure of defect concentration. Two different rates of …


Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis Dec 2015

Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon dioxide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze. Traditional model dielectric functions for layered silicon homojunctions, a system with a similar structure to modern transistors, often have correlated parameters during ellipsometric data analysis. Similarly, epitaxial graphene as grown from thermal sublimation of silicon from silicon carbide or through chemical vapor deposition, tend to have model dielectric function parameters that correlate with the optical thickness of the graphene due to …


Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao Dec 2015

Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Micro parts and systems are playing crucial roles in the area of semiconductor, biomedical device, micro fluid devices, automotive, aerospace and so forth. Micro manufacturing is one of the most important technologies in realizing miniaturization. Compared to other micro manufacturing methods, micro-EDM is drawing lots of attention due to its ability to machine complex 3D parts regardless of the hardness of the workpiece material.

Micro-EDM is the cumulative result of numerous single discharges; therefore, it is crucial to understand the single discharge material removal process in micro-EDM. However, due to the stochastic nature and complex process mechanism, micro-EDM, including its …


Independency Of Elasticity On Residual Stress Of Room Temperature Rolled Stainless Steel 304 Plates For Structure Materials, Parikin Parikin, David Allen Dec 2015

Independency Of Elasticity On Residual Stress Of Room Temperature Rolled Stainless Steel 304 Plates For Structure Materials, Parikin Parikin, David Allen

Makara Journal of Technology

Mechanical strengths of materials are widely expected in general constructions of any building. These properties depend on its formation (cold/hot forming) during fabrication. This research was carried out on cold-rolled stainless steel (SS) 304 plates, which were deformed to 0, 34, 84, and 152% reduction in thickness. The tests were conducted using Vickers method. Ultra micro indentation system (UMIS) 2000 was used to determine the mechanical properties of the material, i.e.: hardness, modulus elasticity, and residual stresses. The microstructures showed lengthening outcropping due to stress corrosion cracking for all specimens. It was found that the tensile residual stress in a …


Effect Of Fly Ash Fortification In The Manufacture Process Of Making Concrete Towards Characteristics Of Concrete In Sulfuric Acid Solution, Asep Handaya Saputra, Muhammad Shohibi, Masatoshi Kubouchi Dec 2015

Effect Of Fly Ash Fortification In The Manufacture Process Of Making Concrete Towards Characteristics Of Concrete In Sulfuric Acid Solution, Asep Handaya Saputra, Muhammad Shohibi, Masatoshi Kubouchi

Makara Journal of Technology

Fly ash is a silica or alumino silica material that can be used as a constituent of cement in the concrete manufacturing process. Utilization of fly ash aims to improve durability and minimize the reduction of concrete’s compressive strength exposed to an acidic environment, which can be achieved through the pozzolanic reaction of fly ash with Ca(OH)2 within concrete. The reduced content of Ca(OH)2 through pozzolanic reaction will minimize the tendency of ettringite formation (compounds that cause deterioration and decrease the compressive strength of concrete). In order to determine the relation between fly ash replenishment into concrete with concrete’s characteristics …


Improvement Of Quality Of Carica Papaya L. With Clove Oil As Preservative In Edible Coating Technology, Eny Kusrini, Anwar Usman, Chrispine Deksita Wisakanti, Rita Arbianti, Dedy Alharis Nasution Dec 2015

Improvement Of Quality Of Carica Papaya L. With Clove Oil As Preservative In Edible Coating Technology, Eny Kusrini, Anwar Usman, Chrispine Deksita Wisakanti, Rita Arbianti, Dedy Alharis Nasution

Makara Journal of Technology

We have studied utilization of essential clove oil, extracted from clove buds by hydrodistillation, as preservative in edible packaging technology. Preservative of essential clove oil was applied on chopped papaya fruits by using two methods, namely spray and brush. The effects of concentration of clove oil from 0.05 to 0.20% on the preservation of papaya fruits (Carica papaya L.) at room temperature (25 °C) were also evaluated. Physicochemical and in vitro microbiological activities on the papaya fruits that were stored at 25 oC and 85-90% relative humidity were investigated in details. The results indicate that the clove oil at concentration …


Oxidation Process Of H 2 O /Uv For Cod Reduction Of Wastewater From Soybean Tofu Production, Komala Pontas, Abrar Muslim Dec 2015

Oxidation Process Of H 2 O /Uv For Cod Reduction Of Wastewater From Soybean Tofu Production, Komala Pontas, Abrar Muslim

Makara Journal of Technology

Chemical Oxygen Demand (COD) reduction of wastewater from soybean tofu production was studied by conducting advanced oxidation process (AOP) using hydrogen peroxide with UV radiation catalysts in a closed cylindrical glass reactor. The hydroxyl radical (*OH) concentration from H2O2 decomposition was modeled, and exponential trends were found for the *OH concentration over radiation time and operation temperature. As a result, it was found that the maximal *OH concentration was 0.209 mol L-1 at 240 minutes and 50 °C. The *OH concentration exponentially increased following rise in operation temperature. The H2O2/UV AOP application reduced COD concentration to approximately 42.41% from 10,545 …


Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche Dec 2015

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche

Electronic Thesis and Dissertation Repository

Solar energy is a promising solution towards meeting the world’s ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with potential for commercial application, but are plagued by inefficiency due to their poor sunlight absorption. Silver nanoparticles have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance causes local hot spots, resulting in cell deterioration. This thesis studies the mitigation of thermal energy loss of plasmon-enhanced DSSCs by the co-incorporation of zirconia, a well-known thermostabilizer, into the cell’s photoactive material. TiO2 was also synthesized using green bio-sourced solvents in supercritical CO2 to compare …


Improving Renewable Energy Transition Acceptance: A Simulation Gaming Approach On A Multi Actor Setting In The Netherlands, Aziiz Sutrisno, Jac A. M. Vennix, Noor Syaifudin Dec 2015

Improving Renewable Energy Transition Acceptance: A Simulation Gaming Approach On A Multi Actor Setting In The Netherlands, Aziiz Sutrisno, Jac A. M. Vennix, Noor Syaifudin

Makara Journal of Technology

The Netherlands have tried very hard to increase their renewable energy sources (RES) shares to fulfill the European Union target in 2050. However, RES performance did not show the expected result as the performance declined in 2009 producing even wider gap compare to the target. The Dutch government’s tried to incorporate all interested stakeholders by forming the Dutch energy transition task force. Nevertheless, the task force’s result is also not showing a desirable trend. Key reasons behind the Dutch low RES performance are the lack of shared understanding and positive attitude toward RES development among interested actors. This research uses …


Calibration Of Numerical Model For Shoreline Change Prediction Using Satellite Imagery Data, Sigit Sutikno, Keisuke Murakami, Dwi Puspo Handoyo, Manyuk Fauzi Dec 2015

Calibration Of Numerical Model For Shoreline Change Prediction Using Satellite Imagery Data, Sigit Sutikno, Keisuke Murakami, Dwi Puspo Handoyo, Manyuk Fauzi

Makara Journal of Technology

This paper presents a method for calibration of numerical model for shoreline change prediction using satellite imagery data in muddy beach. Tanjung Motong beach, a muddy beach that is suffered high abrasion in Rangsang Island, Riau province, Indonesia was picked as study area. The primary numerical modeling tool used in this research was GENESIS (GENEralized Model for Simulating Shoreline change), which has been successfully applied in many case studies of shoreline change phenomena on a sandy beach.The model was calibrated using two extracted coastlines satellite imagery data, such as Landsat-5 TM and Landsat-8 OLI/TIRS. The extracted coastline data were analyzed …


Dual-Band Singly-Fed Proximity-Coupled Tip-Truncated Triangular Patch Array For Land Vehicle Mobile System, Basari Basari, Josaphat Tetuko Sri Sumantyo Dec 2015

Dual-Band Singly-Fed Proximity-Coupled Tip-Truncated Triangular Patch Array For Land Vehicle Mobile System, Basari Basari, Josaphat Tetuko Sri Sumantyo

Makara Journal of Technology

This paper proposes a dual-band left-handed circularly polarized triangular-patch array that is developed for land vehicle mobile system aimed at mobile satellite communications. The array consists of six tip-truncated triangular patches, which the first three patches are used for reception and the second three patches are used for transmission purpose. Each of three-patches has a beam pattern that can be switched in three different 120°-coverage beam in azimuth-cut plane at a minimum targeted gain at a desired elevation angle. The targeted minimum gain of the array is 5 dBic, in order for data communications with a large geostationary satellite can …


Uplift Of Shoreline Regions On Pagai Island Due To The September 12, 2007 Mw 8.4 Earthquake Captured By Sar Image, Ashar Muda Lubis Dec 2015

Uplift Of Shoreline Regions On Pagai Island Due To The September 12, 2007 Mw 8.4 Earthquake Captured By Sar Image, Ashar Muda Lubis

Makara Journal of Technology

At least 25 people were killed by the September 12, 2007 Mw 8.4 Bengkulu earthquake, and many buildings were destroyed in Bengkulu and West Sumatra provinces. It is very important to estimate the earth surface deformation due to the earthquake to understand the rupture size and its process. The aim of this research is to estimate the shoreline change and vertical displacement on Pagai Island associated with the September 12, 2007 Mw 8.4 Bengkulu earthquake. The intensity of ALOS-PALSAR satellite images is used to access the pattern of displacement. The result shows that Pagai Island demonstrated huge uplift due to …


Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang Dec 2015

Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang

Doctoral Dissertations

Stimuli-responsive polymeric materials have been now widely researched toward the biomedical applications including therapeutic delivery, bio-sensor surface modification, and tissue-engineering, etc., considering their desirable biocompatibility, tunable properties, and sensitivity toward physiological stimuli. Beyond the monoresponsive materials, polymers with responsiveness simultaneously toward multiple stimuli are paid great attention to because the control of responsive behaviors could be achieved at a more accurately and delicately level in a complex local environment. However, many challenges still exist such as maintaining integrity of the structure, shaping the morphology at micro- and macro-scale, and regulating a controllable and predictable transition behavior.

The objectives of this …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …