Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

2016

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 392

Full-Text Articles in Engineering

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Experimental Methods And Practices For The Study Of Toroidal Inflated, Braided Fabric Members, Daniel J. Whitney Dec 2016

Experimental Methods And Practices For The Study Of Toroidal Inflated, Braided Fabric Members, Daniel J. Whitney

Electronic Theses and Dissertations

Inflatable structures have become a very important area of interest for many differing applications where lightweight packable structures are required. NASA is developing Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology that takes advantage of stacked, inflated fabric tori to form a decelerating spacecraft nose cone. The tori consist of a bladder, braided fabric shell, and reinforcing in the form of integral cords or externally bonded straps. The focus of this thesis is on the development of methods for the structural testing of inflated fabric tori and developing an enhanced understanding of their behavior. This is essential for providing insight into the …


In Mold Flow Of Long Fibers In Compression Molding Process, Gleb Meirson Dec 2016

In Mold Flow Of Long Fibers In Compression Molding Process, Gleb Meirson

Electronic Thesis and Dissertation Repository

Long Fiber Thermoplastics (LFT) are promising new materials with high physical properties and low density. These high properties are obtained by embedding very long fibers (~100 mm) into a thermoplastic matrix. Such a high fiber length dictates the use of a compression molding process for manufacturing as the length of discontinuous fibers in injection molding is limited by pellet length.

LFT composites are of great interest for the automotive industry. These materials are already used in some interior and exterior car parts such as bumpers, seat structures, door module etc. This research is inspired by the desire to manufacture load …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt Dec 2016

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt

Doctoral Dissertations

The computational ability to accurately predict the conditions in an experiment under irradiation is a valuable tool in the operation of a research reactor whose scientific mission includes isotope production, materials irradiation, and neutron activation analysis. Understanding of different governing physics is required to ascertain satisfactory conditions within the experiment: the neutron transport behavior throughout the reactor and the coupled behavior of heat transfer, structural mechanics and fluid flow. Computational methods and tools were developed for robust numerical analysis of experiment behavior at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR), including fully-coupled thermo-mechanics in three plutonium-238 …


Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers, Nitilaksha Phalaxayya Hiremath Dec 2016

Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers, Nitilaksha Phalaxayya Hiremath

Doctoral Dissertations

There is continuing effort to enhance the strength and modulus of carbon fibers by various combinations of materials and processing. Carbon fibers are produced from various precursors, and the strength of the CFs are directly related to the type of precursor used to make them. Carbon Nanotubes (CNTs) have received a great deal of attention due to their unique structure and properties. Major focus of this research is on the evaluation of processing, structure and properties of CNT based yarns and composite fibers.

High strength and low cost carbon fibers (CFs) are needed for today’s applicatio ns. A low cost …


Helium Diffusion And Accumulation In Gd2ti2o7 And Gd2zr2o7, Caitlin Anne Taylor Dec 2016

Helium Diffusion And Accumulation In Gd2ti2o7 And Gd2zr2o7, Caitlin Anne Taylor

Doctoral Dissertations

The effects of helium accumulation on bubble formation and mechanical properties, as well as the fundamentals of helium diffusion in pyrochlores, are experimentally investigated in Gd2Ti2O7 [gadolinium titanate] and Gd2Zr2O7 [gadolinium zirconate]. We find that helium accumulation results in bubble formation at concentrations of 6 at.% in pre-damaged Gd2Ti2O7 and 4.6 at.% in pre-damaged Gd2Zr2O7. Lattice parameter, residual stress, and hardness changes due to helium accumulation were investigated in Gd2Zr2O7, which remains crystalline …


Study Of Graphitization In Carbon Steel Weldments For Remaining Life Assessment, Maneel Bharadwaj Dec 2016

Study Of Graphitization In Carbon Steel Weldments For Remaining Life Assessment, Maneel Bharadwaj

Doctoral Dissertations

Carbon steels and low-alloy steels are often used in various stages of the refining process in petrochemical industries and power plants where they are susceptible to graphitization after prolonged exposure at temperatures of 800°F (427°C) or above. Graphitization is a result of solid-state phase transformation of metastable iron carbide to form iron and graphite structure. The formation of graphite results in the loss of tensile strength, ductility, and creep strength, which may result in untimely catastrophic failure of the component. The current study focused on developing a further understanding of graphitization on ex-service welded carbon steel components, which were removed …


Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers Dec 2016

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reactivity reveals that these P3HT …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Novel Integration Of Conductive-Ink Circuitry With A Paper-Based Microfluidic Battery As An All-Printed Sensing Platform, Rishi A. Kripalani Dec 2016

Novel Integration Of Conductive-Ink Circuitry With A Paper-Based Microfluidic Battery As An All-Printed Sensing Platform, Rishi A. Kripalani

Master's Theses

The addition of powered components for active assays into paper-based analytical devices opens new opportunities for medical and environmental analysis in resource-limited applications. Current battery designs within such devices have yet to adopt a ubiquitous circuitry material, necessitating investigation into printed circuitry for scalable platforms. In this study, a microfluidic battery was mated with silver-nanoparticle conductive ink to prototype an all-printed sensing platform. A multi-layer, two-cell device was fabricated, generating 200 μA of direct electrical current at 2.5 V sustained for 16 minutes with a power loss of less than 0.1% through the printed circuitry. Printed circuitry traces exhibited resistivity …


Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia Dec 2016

Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia

Graduate Theses and Dissertations

This research examines the relationship between concrete compressive strength and strand bond. The goal of this research was to develop an equation that relates strand bond to concrete compressive strength at strand release (approximately 1 day of age) and at 28 days of age, and those equations are presented in this investigation. Strand bond is assessed by measuring the transfer length and development length for prestressed beams cast in the laboratory. In the U.S., strand bond is predicted using transfer length and development length equations provided by the American Concrete Institute (ACI-318) Building Code and American Association of State and …


Synthesis And Characterization Of Microporous And Mesoporous Zeolites From Flyash For Heavy Metal Removal From Wastewater, Saeed Golbad Dec 2016

Synthesis And Characterization Of Microporous And Mesoporous Zeolites From Flyash For Heavy Metal Removal From Wastewater, Saeed Golbad

Theses and Dissertations

Class F fly ash was hydrothermally modified in one- and two-step processes to prepare zeolites with enhanced adsorption characteristics. Highly crystalline X type zeolite and hydroxy sodalite were targeted as microporous and mesoporous zeolite and were successfully synthesized using fly ash precursor by adjusting Si/Al molar ratio in reaction mixture. The heavy metal removal performance of the obtained fly ash-based zeolites was investigated in batch Pb2+ adsorption experiments.

Lead (Pb2+) is a positively charged toxic pollutant that can be present in surface water and industrial wastewater and may cause harmful physiological effects to human. As a result, standards for water …


Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo Dec 2016

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo

Open Access Dissertations

Thermal barrier coatings (TBCs) are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The current state-of-art TBC material is yttria-stabilized zirconia (YSZ), whose service temperature is limited to 1200 celsius, due to sintering and phase transition at higher temperatures. In comparison, lanthanum zirconate (La2Zr2O7, LZ) has become a promising candidate material for TBCs due to its lower thermal conductivity and higher phase stability compared to YSZ.

The primary objective of this thesis is to design a novel robust LZ-based TBC system suitable for applications beyond 1200 celsius. Due to LZ’s low …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya Dec 2016

Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya

Open Access Dissertations

Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy …


Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell Dec 2016

Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell

Open Access Theses

To find material systems that offer low density and high strength, stiffness or toughness, hierarchically designed material systems have provided a promising research area. This thesis lays the groundwork for designing efficient micro-architectured material systems by characterizing size effects for 3d printed polymer parts. Two methods were used to analyze data from 3-point bend tests for specimens of varying size: the load-separation method was used for finding the point of crack growth initiation and Bazant’s method was used to find shape independent strength at failure. The strength values were used as inputs for finding size independent material constants within a …


Design Of Nitroxide-Based Radical Polymer Materials For Electronic Applications, Martha E. Hay Dec 2016

Design Of Nitroxide-Based Radical Polymer Materials For Electronic Applications, Martha E. Hay

Open Access Theses

Radical polymers represent a new class of organic electronic materials that rely on an oxidation-reduction (redox) reaction to transport charge. That is, stable radical sites pendant to the polymer backbone communicate electronically through a rapid oxidation-reduction reaction. This redox mechanism has previously been established as effective for charge-storage applications (e.g., secondary batteries). When applied in the solid state, radical polymers demonstrate electrical conductivity on par with that of first-generation conjugated polymer electronic materials. This initial success has prompted interest in developing design rules for radical polymers. Specifically, this thesis explores the impact of radical density in a polymer …


Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez Dec 2016

Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez

Open Access Theses

High performance fibers are characterized by properties such as high strength and resistance to chemicals and heat. Due to their outstanding properties, they are used on applications under harsh environments that can degrade and decrease their performance. Fiber degradation due to different chemical and mechanical factors, is a process that begins at a microstructural level. Changes in the polymer’s chemical or physical structure can alter their mechanical properties. Knowledge of the structure-properties relationship and the effects of environmental chemical and physical factors over time, is crucial for the improvement and development of high performance fibers.

In this study ballistic fibers …


Linking Nanoscale Mechanical Behavior To Bulk Physical Properties And Phenomena Of Energetic Materials, Matthew R. Taw Dec 2016

Linking Nanoscale Mechanical Behavior To Bulk Physical Properties And Phenomena Of Energetic Materials, Matthew R. Taw

Open Access Theses

The hardness and reduced modulus of aspirin, RDX, HMX, TATB, FOX-7, ADAAF, and TNT/CL-20 were experimentally measured with nanoindentation. These values are reported for the first time using as-received micron sized crystals of energetic materials with no additional mechanical processing. The results for TATB, ADAAF, and TNT/CL-20 are the first of their kind, while comparisons to previous nanoindentation studies on large, carefully grown single crystals of the other energetic materials show that mechanical properties of the larger crystals are comparable to crystals in the condition they are practically used. Measurements on aspirin demonstrate the variation that can occur between nanoindentation …


The Influence Of Alkalinity Of Portland Cement On The Absorption Characteristics Of Superabsorbent Polymers (Sap) For Use In Internally Cured Concrete, Juan D. Tabares Tamayo Dec 2016

The Influence Of Alkalinity Of Portland Cement On The Absorption Characteristics Of Superabsorbent Polymers (Sap) For Use In Internally Cured Concrete, Juan D. Tabares Tamayo

Open Access Theses

The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking.

This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez Dec 2016

Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez

Open Access Dissertations

The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. …


Mechanism Of Shot Peening Enhancement For The Fatigue Performance Of Aa7050-T7451, Daniel James Chadwick Dec 2016

Mechanism Of Shot Peening Enhancement For The Fatigue Performance Of Aa7050-T7451, Daniel James Chadwick

Open Access Theses

Shot peening is a dynamic cold working process involving the impingement of peening media onto a substrate surface. Shot peening is commonly employed as a surface treatment technique within the aerospace industry during manufacturing, in order to improve fatigue performance of structural components. The compressive residual stress induced during shot peening is understood to result in fatigue crack growth retardation, improving the performance of shot peened components. However, shot peening is a compromise between the benefit of inducing a compressive residual stress and causing detrimental surface damage. Due to the relatively soft nature of AA7050-T7451, shot peening can result in …


Passive Thermal Management Using Phase Change Materials, Yash Yogesh Ganatra Dec 2016

Passive Thermal Management Using Phase Change Materials, Yash Yogesh Ganatra

Open Access Theses

The trend of enhanced functionality and reducing thickness of mobile devices has led to a rapid increase in power density and a potential thermal bottleneck since thermal limits of components remain unchanged. Active cooling mechanisms are not feasible due to size, weight and cost constraints. This work explores the feasibility of a passive cooling system based on Phase Change Materials (PCMs) for thermal management of mobile devices. PCMs stabilize temperatures due to the latent heat of phase change thus increasing the operating time of the device before threshold temperatures are exceeded. The primary contribution of this work is the identification …


Empirical Models For Structural Effects Of A-Site Point Defects And Ordering In Perovskites, Kevin Ross Tolman Dec 2016

Empirical Models For Structural Effects Of A-Site Point Defects And Ordering In Perovskites, Kevin Ross Tolman

Boise State University Theses and Dissertations

Composition-structure-property relationships are essential keys to unlocking the strength of predictive crystal chemistry. Awkwardly, the electroceramics industry largely relies on various time-consuming and expensive trial-and-error experiments to address new questions which often could otherwise be interpolated from published data. Indeed, predictive models, which can be derived from empirical evidence, can greatly aid the direction and support of future development in a meaningful, apt, and cost-effective way. Theory suggests that intrinsic properties on the scale of a unit cell may be estimated from the sizes and charges of the chemical constituents alone. Ultimately, researchers could be provided a compositional recipe for …


Corrosion Of Aluminum Current Collector In Cost Effective Rechargeable Lithium-Ion Batteries, Shengyi Li Dec 2016

Corrosion Of Aluminum Current Collector In Cost Effective Rechargeable Lithium-Ion Batteries, Shengyi Li

Theses and Dissertations

Rechargeable lithium ion batteries (LIB) have been widely used as commercial energy storage systems for portable equipment, electronic devices and high power applications (e.g. electronic vehicles). One issue with the commercialized LIB is that expensive, highly toxic and flammable organic solvents are used in the electrolyte and the fabrication process of electrodes. The toxic organic based solvents increase the production cost and lead to significant safety concerns in the event of a battery overcharge or short circuit. The recent development of “green manufacturing” technology allows manufacturers to replace the organic solvents used in the cathode coating process by aqueous based …


The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula Dec 2016

The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula

Graduate Theses and Dissertations

Additive patching is a process in which printers with multiple axes deposit molten material onto a pre-defined surface to form a bond. Studying the effect of surface roughness and process parameters selected for printing auxiliary part on the bond helps in improving the strength of the final component. Particularly, the influence of surface roughness, as established by adhesion theory, has not been evaluated in the framework of additive manufacturing (AM). A full factorial design of experiments with five replications was conducted on two levels and three factors, viz., layer thickness, surface roughness, and raster angle to examine the underlying effects …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


High Temperature Oxidation Of Alumina Forming Cast Austenitic Stainless Steels Within An Environment Of Pure Steam, Elmer A. Prenzlow Dec 2016

High Temperature Oxidation Of Alumina Forming Cast Austenitic Stainless Steels Within An Environment Of Pure Steam, Elmer A. Prenzlow

Theses and Dissertations

Steam cracking of hydrocarbons in the petrochemical industry is a multibillion dollar industry. The processes performed in these plants create byproducts that negatively affect the integrity of stainless steel piping through high temperature corrosion. Alloys used presently in industry rely on the formation of chromium oxide (chromia) as a protective layer between the bulk metal pipe and chemical byproducts. However, chromia can become susceptible to attack from aggressive species such as carbon, water vapor, and sulfur compounds, thus creating a need for a better protection method.

A new series of austenitic stainless steels have been developed in recent years that, …