Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Selected Works

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 847

Full-Text Articles in Engineering

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney Oct 2019

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney

A. I. Goldman

Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo2As2 below T approximate to 100 K centered at the stripe-type AF propagation vector of (1/2, 1/2), and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability toward ferromagnetism ordering to an instability …


Design, Construction, And Preliminary Investigations Of Otta Seal In Iowa, Sharif Y. Gushgari, Yang Zhang, Ali Nahvi, Halil Ceylan, Sunghwan Kim, Ali Arabzadeh, Charles T. Jahren, Charles Øverby Aug 2019

Design, Construction, And Preliminary Investigations Of Otta Seal In Iowa, Sharif Y. Gushgari, Yang Zhang, Ali Nahvi, Halil Ceylan, Sunghwan Kim, Ali Arabzadeh, Charles T. Jahren, Charles Øverby

Ali Nahvi

Faced with limited financial resources, pavement engineers constantly seek more durable and economical technologies for road preservations and rehabilitations. Consequently, there have been many efforts to study resurfacing strategies, including various types of sealing for local roads. Among different sealing methodologies, Otta seal is a technique that has not yet been sufficiently studied in the U.S.A. For this investigation, the first Otta seal site in the state of Iowa was constructed using a double-layer Otta seal design over 6.4 km of cracked asphalt pavement. Otta seal design and construction details are documented and discussed, and test sections using various aggregates …


Polyurethane-Carbon Microfiber Composite Coating For Electrical Heating Of Concrete Pavement Surfaces, Alireza Sassani, Ali Arabzadeh, Halil Ceylan, Sunghwan Kim, Kasthurirangan Gopalakrishnan, Peter C. Taylor, Ali Nahvi Aug 2019

Polyurethane-Carbon Microfiber Composite Coating For Electrical Heating Of Concrete Pavement Surfaces, Alireza Sassani, Ali Arabzadeh, Halil Ceylan, Sunghwan Kim, Kasthurirangan Gopalakrishnan, Peter C. Taylor, Ali Nahvi

Ali Nahvi

Electrically-heated pavements have attracted attention as alternatives to the traditional ice/snow removal practices. Electrically conductive polymer-carbon composite coatings provide promising properties for this application. Based on the concept of joule heating, the conductive composite can be utilized as a resistor that generates heat by electric current and increases the surface temperature to melt the ice and snow on the pavement surface. This research investigates the feasibility of applying an electrically conductive composite coating made with a Polyurethane (PU) binder and micrometer-scale carbon fiber (CMF) filler as the electrical heating materials on the surface of Portland cement concrete (PCC) pavements. PU-CMF …


Application-Specific Oxide-Based And Metal-Dielectric Thin Film Materials Prepared By Rf Magnetron Sputtering Preprints201908.0184.V1.Pdf, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh Aug 2019

Application-Specific Oxide-Based And Metal-Dielectric Thin Film Materials Prepared By Rf Magnetron Sputtering Preprints201908.0184.V1.Pdf, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

We report on the development of several different thin-film functional material systems prepared by RF magnetron sputtering at Edith Cowan University nanofabrication labs. We conduct research on the design, prototyping, and practical fabrication of high-performance magneto-optic (MO) materials, oxide based sensor components, and heat regulation coatings for advanced construction and solar windows.


Suppression Of Antiferromagnetic Spin Fluctuations In Superconducting Cr0.8 Ru0.2, M. Ramazanoglu, Benjamin G. Ueland, D. K. Pratt, L. W. Harringer, J. W. Lynn, G. Ehlers, G. E. Granroth, Sergey L. Bud’Ko, Paul C. Canfield, Deborah L. Schlagel, Alan I. Goldman, Thomas A. Lograsso, Robert J. Mcqueeney Jul 2019

Suppression Of Antiferromagnetic Spin Fluctuations In Superconducting Cr0.8 Ru0.2, M. Ramazanoglu, Benjamin G. Ueland, D. K. Pratt, L. W. Harringer, J. W. Lynn, G. Ehlers, G. E. Granroth, Sergey L. Bud’Ko, Paul C. Canfield, Deborah L. Schlagel, Alan I. Goldman, Thomas A. Lograsso, Robert J. Mcqueeney

A. I. Goldman

Unconventional superconductivity (SC) often develops in magnetic metals on the cusp of static antiferromagnetic (AFM) order where spin fluctuations are strong. This association is so compelling that many SC materials are labeled as unconventional by proximity to an ordered AFM state. The Cr-Ru alloy system possesses such a phase diagram [see Fig. 1(a)]. Here we use inelastic neutron scattering to show that spin fluctuations are present in a SC Cr0.8Ru0.2 alloy (Tc=1.35 K). However, the neutron spin resonance, a possible signature of unconventional SC, is not observed. Instead, data indicate a spin gap of order 2Δ (the superconducting gap) and …


Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri Jun 2019

Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri

Dan Nettleton

After being the standard plant propagation protocol for decades, cultures of Arabidopsis thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity (as in co-cultures with microorganisms). Regardless of concerns over the aeration of these cultures, no investigation has explored the CO2 transport inside these cultures and its effect on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in thousands of older papers in the literature constitute a treatment, and whether this treatment could potentially affect the study of other treatments.For the first time we report the CO2concentrations in Parafilm-sealed cultures of …


Project Excel: Web-Based Scanning Electron Microscopy For K-12 Education, L. Scott Chumbley, Connie P. Hargrave, Kristen P. Constant, Brian Hand, Thomas Andre, E. Ann Thompson May 2019

Project Excel: Web-Based Scanning Electron Microscopy For K-12 Education, L. Scott Chumbley, Connie P. Hargrave, Kristen P. Constant, Brian Hand, Thomas Andre, E. Ann Thompson

Constance P. Hargrave

Project ExCEL (Extended Classroom for Enhanced Learning) brings the capabilities of scanning electron microscopy (SEM) into classrooms. University and industry personnel, working together, have developed a web-based interface to allow schools to control a modern SEM. The interface allows a user control of the operating parameters of the microscope, stage movement, and chemical analysis. Such total control is not available on any other system. Since Iowa State University (ISU) pioneered the idea of remote SEM for education, researchers have learned that providing teachers access to sophisticated equipment does not ensure that it will be used. Teachers are busy, and structured …


Project Excel—Web-Based Sem For K–12 Education, L. Scott Chumbley, Kristen P. Constant, Connie P. Hargrave, Tom Andre May 2019

Project Excel—Web-Based Sem For K–12 Education, L. Scott Chumbley, Kristen P. Constant, Connie P. Hargrave, Tom Andre

Constance P. Hargrave

The goal of Project ExCEL, the Extended Classroom for Enhanced Learning, is to bring the capabilities of Scanning Electron Microscopy (SEM) into elementary and secondary classrooms. We have developed an entirely web-based interface to allow schools to control a modern SEM. The web interface allows a remote user complete control of all the operating parameters of the microscope, including stage movement and x-ray chemical analysis. Such total control currently is not available on any other system. Since pioneering the idea of remote SEM use for K-12 education in the early 1990s, we have learned that merely providing schools and teachers …


Self-Healing Materials For Soft-Matter Machines And Electronics, Michael D. Bartlett, Michael D. Dickey, Carmel Majidi May 2019

Self-Healing Materials For Soft-Matter Machines And Electronics, Michael D. Bartlett, Michael D. Dickey, Carmel Majidi

Michael Bartlett

The emergence of soft machines and electronics creates new opportunities to engineer robotic systems that are mechanically compliant, deformable, and safe for physical interaction with the human body. Progress, however, depends on new classes of soft multifunctional materials that can operate outside of a hard exterior and withstand the same real-world conditions that human skin and other soft biological materials are typically subjected to. As with their natural counterparts, these materials must be capable of self-repair and healing when damaged to maintain the longevity of the host system and prevent sudden or permanent failure. Here, we provide a perspective on …


Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett May 2019

Liquid Metal-Elastomer Soft Composites With Independently Controllable And Highly Tunable Droplet Size And Volume Loading, Ravi Tutika, Steven Kmiec, A. B. M. Tahidul Haque, Steve W. Martin, Michael D. Bartlett

Michael Bartlett

Soft composites are critical for soft and flexible materials in energy harvesting, actuators, and multifunctional devices. One emerging approach to create multifunctional composites is through the incorporation of liquid metal (LM) droplets such as eutectic gallium indium (EGaIn) in highly deformable elastomers. The microstructure of such systems is critical to their performance, however, current materials lack control of particle size at diverse volume loadings. Here, we present a fabrication approach to create liquid metal-elastomer composites with independently controllable and highly tunable droplet size (100 nm ≦ D ≦ 80 μm) and volume loading (0 ≦ φ ≦ 80%). This is …


Otta Seal Construction For Asphalt Pavement Resurfacing, Sharif Y. Gushgari, Yang Zhang, Ali Nahvi, Halil Ceylan, Sunghwan Kim Apr 2019

Otta Seal Construction For Asphalt Pavement Resurfacing, Sharif Y. Gushgari, Yang Zhang, Ali Nahvi, Halil Ceylan, Sunghwan Kim

Ali Nahvi

Otta seal resurfacing methods have been widely demonstrated for unpaved roads and road rehabilitation in a few states in the U.S. as well as in Scandinavia and Africa. Application of Otta seal over a deteriorated hot mix asphalt (HMA) surface has been considered as the feasible concept that has not been applied for real construction. In this study, a double-layer Otta seal construction over HMA surface was monitored. The applied materials for the construction were introduced. The following performance of the constructed Otta seal layers was evaluated by measuring the international roughness index (IRI) and dust. The road IRI did …


Effects Of Disorder On Thermoelectric Properties Of Semiconducting Polymers, Zlatan Aksamija, Dhandapani Venkataraman, Connor J. Boyle, Meenakshi Upadhyaya Apr 2019

Effects Of Disorder On Thermoelectric Properties Of Semiconducting Polymers, Zlatan Aksamija, Dhandapani Venkataraman, Connor J. Boyle, Meenakshi Upadhyaya

Zlatan Aksamija

Organic materials have attracted recent interest as thermoelectric (TE) converters due to their low cost and ease of fabrication. We examine the effects of disorder on the TE properties of semiconducting polymers based on the Gaussian disorder model (GDM) for site energies while employing Pauli’s master equation approach to model hopping between localized sites. Our model is in good agreement with experimental results and a useful tool to study hopping transport. We show that stronger overlap between sites can improve the electrical conductivity without adversely affecting the Seebeck coefficient. We find that positional disorder aids the formation of new conduction …


Further Insights Into Calcium Sulfoaluminate Cement Expansion, Craig W. Hargis, Barbara Lothenbach, Christian J. Müller, Frank Winnefeld Mar 2019

Further Insights Into Calcium Sulfoaluminate Cement Expansion, Craig W. Hargis, Barbara Lothenbach, Christian J. Müller, Frank Winnefeld

Craig Hargis

There is still an ongoing debate on the mechanisms of expansion of calcium sulfoaluminate (CSA) cements, which can be either favourable, for example, in shrinkage compensating construction materials, or deleterious in cases of excessive expansion. In order to expand on previous studies, CSA cements with molar ratios (M) of calcium sulfate/ye’elimite of 0·1, 1, 1·5 and 2 were investigated from 30 min to 182 d. All systems showed expansion, and expansion was found to increase with increasing gypsum content. The sample with M= 2 showed a high expansion and severe cracking after 1 d of hydration. Based on the pore …


Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce Mar 2019

Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce

Joshua M. Pearce

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D …


Open Source Low-Cost Power Monitoring System, Shane W. Oberloier, Joshua M. Pearce Mar 2019

Open Source Low-Cost Power Monitoring System, Shane W. Oberloier, Joshua M. Pearce

Joshua M. Pearce

This study presents an entirely open-source, low-cost power monitoring system capable of many types of measurements including both loads and supplies such as solar photovoltaic systems. In addition, the system can be fabricated using only open source software and hardware. The design revolves around the Digital Universal Energy Logger (DUEL) Node, which is responsible for reading and properly scaling the voltage and current of a particular load, and then serializing it via an on-board ATTiny85 chip. The configuration of the DUEL node allows for custom sensitivity ranges, and can handle up to 50 A and 300 V. Up to 127 …


A National Pragmatic Safety Limit For Nuclear Weapon Quantities, Joshua M. Pearce, David C. Denkenberger Mar 2019

A National Pragmatic Safety Limit For Nuclear Weapon Quantities, Joshua M. Pearce, David C. Denkenberger

Joshua M. Pearce

This study determines the nuclear pragmatic limit where the direct physical negative consequences of nuclear weapons use are counter to national interests, by assuming all unknowns are conservatively optimistic. The only effect considered is nuclear winter (“nuclear autumn” in the low weapons limits) and the resultant effects on the aggressor nation. First, the ability of low nuclear weapon limits is probed for maintaining deterrence in the worst-case scenario of attacking the most-populous nation. Second, the ability of aggressor nations to feed themselves is assessed without trade and industry resultant from a nuclear attack causing “nuclear autumn” (10% global agricultural shortfall). …


Nickel Based Rtd Fabricated Via Additive Screen Printing Process For Flexible Electronics, Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar Feb 2019

Nickel Based Rtd Fabricated Via Additive Screen Printing Process For Flexible Electronics, Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar

Bilge Nazli Altay

A novel nickel (Ni) based resistance temperature detector (RTD) was successfully developed for temperature monitoring applications. The RTD was fabricated by depositing Ni ink on a flexible polyimide substrate using the screen printing process. Thermogravimetric analysis was performed to study the thermal behavior of the Ni ink and it was observed that the Ni ink can withstand up to 200°C before decomposition of the binder in the ink system. Scanning electron microscopy and white light interferometry were used to analyze the surface morphology of the printed Ni. X-ray diffractometry was used to obtain structural information, phase and crystallite size of …


Quantifying Thermal Boundary Conductance Of 2d–3d Interfaces, Zlatan Aksamija, Cameron J. Foss Feb 2019

Quantifying Thermal Boundary Conductance Of 2d–3d Interfaces, Zlatan Aksamija, Cameron J. Foss

Zlatan Aksamija

Heat dissipation in next-generation electronics based on two-dimensional (2D) materials is a
critical issue in their development and implementation. A potential bottleneck for heat removal in
2D-based devices is the thermal pathway from the 2D layer into its supporting substrate. The choice
of substrate, its composition and structure, can strongly impact the thermal boundary conductance
(TBC). Here we investigate the temperature-dependent TBC of 42 interfaces formed between a
group of six 2D materials and seven crystalline and amorphous substrates. We use first-principles
density functional perturbation theory to calculate the full phonon dispersion of the 2D layers and
substrates and then …


Sure Abstract - Spring 2019: Biomimetic Metamaterial Scales Enhancing Thermal Coatings’ Mechanical Properties For Turbine Blades, Ryan Horton Feb 2019

Sure Abstract - Spring 2019: Biomimetic Metamaterial Scales Enhancing Thermal Coatings’ Mechanical Properties For Turbine Blades, Ryan Horton

Ryan Horton

No abstract provided.


Magneto-Active Slosh Control System Using Free Floating Membrane For Cylinderical Propellant Tanks Read More: Https://Arc.Aiaa.Org/Doi/Abs/10.2514/6.2019-2177, Pedro Llanos Jan 2019

Magneto-Active Slosh Control System Using Free Floating Membrane For Cylinderical Propellant Tanks Read More: Https://Arc.Aiaa.Org/Doi/Abs/10.2514/6.2019-2177, Pedro Llanos

Pedro J. Llanos (www.AstronauticsLlanos.com)

The phenomenon of sloshing is a substantial challenge in propellant management, particularly in reduced gravity where surface tension-driven flows result in large slosh amplitudes and relatively long decay time scales. Propellant Management Devices (PMDs) such as the rigid baffles and elastomeric membranes are often employed to counteract motion of the free surface. In the present study, we investigate an active PMD that utilizes a free-floating membrane that, under an applied static magnetic field, becomes rigid and suppresses slosh. This semi-rigid structural layer can thereby replace bulky baffle structures and reduce the overall weight of the tank. In this paper, the …


Effect Of Volcanic Ash Pozzolan Or Limestone Replacement On Hydration Of Portland Cement, Kemal Celik, Craig W. Hargis, Rotana Hay, Juhyuk Moon Dec 2018

Effect Of Volcanic Ash Pozzolan Or Limestone Replacement On Hydration Of Portland Cement, Kemal Celik, Craig W. Hargis, Rotana Hay, Juhyuk Moon

Craig Hargis

The replacement of Portland cement (PC) with either supplementary cementitious material (SCM) or fillers, such as natural pozzolans (NP) or limestone powder (LP) respectively, is known to affect the chemical properties of concrete, thus influencing its fresh and hardened properties. This study investigated the effects of volcanic ash NP or LP on setting time, normal consistency, hydration, and strength properties of cement paste and mortar while following the chemical changes that were a direct result of the substitution. While both materials were found to increase water demand, NP at 30% and 50% replacement levels increased setting time while LP at …


Investigation Of The Evolution Of Hydrophobicity And Wettability Of Paper In Multi-Color Printing Process, C Aydemir, A Karademir, S Imamoglu, Bilge N. Altay, Paul D. Fleming, D Tutak Dec 2018

Investigation Of The Evolution Of Hydrophobicity And Wettability Of Paper In Multi-Color Printing Process, C Aydemir, A Karademir, S Imamoglu, Bilge N. Altay, Paul D. Fleming, D Tutak

Bilge Nazli Altay

One of the keys to improving print quality is to experimentally characterize the paper surface, structure and printability to obtain quality control mechanisms. In multi-color prints, determining the differences in the acceptance of the next color ink by the surface of the paper or the ink film that was previously printed is important for print quality. The criteria, such as ink setting, adhesion, color, gloss and density, in the printing process, depend on the wettability and absorbency of the paper. The surface structure of the paper is the most important factor in determining the hydrophobic properties. In this study, wetting …


Tailoring Materials Behavior Using Geometry.Pdf, Hessein Ali, Hossein Ebrahimi, Ranajay Ghosh Dec 2018

Tailoring Materials Behavior Using Geometry.Pdf, Hessein Ali, Hossein Ebrahimi, Ranajay Ghosh

Hossein Ebrahimi

Many applications require materials whose response can be tuned such as morphing wings for super maneuverable vehicles, soft robotics and space structures. Nature achieves this objective using external dermal features – skin, furs, tooth, feathers. These nonlinearities are generated using the geometry and topology of the scales. The scales provide distinct structural advantages such as protection and tailorable response from scales contact. Scales also aid in highly dynamic life functions – such as locomotion, anti anti-fouling, flapping flights, swimming. Material to structural correlations are highly nonlinear due to scale topology. We aim to reveal structure structure-propertyproperty-architecture correlations for automated 3D …


Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar Nov 2018

Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar

Bilge Nazli Altay

In recent years, traditional printing methods have been integrated to print flexible electronic devices and circuits. Since process requirements for electronics diff er from those for graphic printing, the fundamentals require rediscovery mainly to optimize manufacturing techniques and to find cost reduction methods without compromising functional performance. In addition, alternative inks need to be formulated to increase the variety of functional inks and to pioneer new product developments. In this report, we investigate a thermoplastic-based nickel ink prototype to print electrodes using a screen-printing process. Process fundamentals are explored, and cost reduction methods are addressed by studying …


Global Packaging Trends, Bekir Keskin, Bilge N. Altay, Merve Akyol, Guven Meral, Olgun Uyar, Paul D. Fleming Oct 2018

Global Packaging Trends, Bekir Keskin, Bilge N. Altay, Merve Akyol, Guven Meral, Olgun Uyar, Paul D. Fleming

Bilge Nazli Altay

The packaging sector is one of the massive traditional fields in the printing industry. The rapid developments in technology and environmental regulations have been affecting the expectations from packaging. User demands and the concerns to protect the environment are the two main factors that now demanding change in material properties. The choice used to depend on the physical and chemical requirements of the products, although today’s global mind set on the concepts such as biodegradability, recyclability, reusability, sustainability and carbon footprint reduction are becoming the reason to tailor packaging properties. In general, the choices have been switching from petroleum to …


The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Gnygrens18.Pdf, Garrett Nygren Aug 2018

Gnygrens18.Pdf, Garrett Nygren

Garrett Nygren

The finite element method was used to evaluate microstructural strengthening and toughening effects in nanoparticulate reinforced polymer composites (nanocomposites) and in short aligned discontinuous fiber reinforced polymer composites. Nanoparticulate reinforcement is a well-known method of polymer toughening which can greatly expand the range of engineering applications for polymers. However, the mechanisms of nanoparticulate toughening, as well as complementary sub-micron fracture processes, are not well understood. Short, aligned, discontinuous carbon fiber reinforced thermoplastics show promise as a versatile, inexpensive material system with favorable manufacturability, but failure of the associated morphologies is also not yet well explored.
In nanocomposites, two microstructural effects …


Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee Jul 2018

Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee

Zlatan Aksamija

The steady-state behavior of thermal transport in bulk and nanostructured semiconductors has been widely
studied, both theoretically and experimentally. On the other hand, fast transients and frequency dynamics of
thermal conduction has been given less attention. The frequency response of thermal conductivity has become
more crucial in recent years, especially in light of the constant rise in the clock frequencies in microprocessors
and terahertz sensing applications. Thermal conductivity in response to a time-varying temperature field starts
decaying when the frequency exceeds a cutoff frequency Omega_c, which is related to the inverse of phonon relaxation time τ, on the order of …


Power Dissipation Of Wse2 Field-Effect Transistors Probed By Low- Frequency Raman Thermometry, Zlatan Aksamija, Cameron J. Foss, Arnab K. Majee, Amin Salehi-Khojin Jun 2018

Power Dissipation Of Wse2 Field-Effect Transistors Probed By Low- Frequency Raman Thermometry, Zlatan Aksamija, Cameron J. Foss, Arnab K. Majee, Amin Salehi-Khojin

Zlatan Aksamija

The ongoing shrinkage in the size of two-dimensional (2D) electronic circuitry results in high power densities during device operation, which could cause a significant temperature rise within 2D channels. One challenge in
Raman thermometry of 2D materials is that the commonly used high-frequency modes do not precisely represent the temperature rise in some 2D materials because of peak broadening and intensity weakening at elevated temperatures. In this work, we show that a low-frequency E2g 2 shear mode can be used to accurately extract temperature and measure thermal boundary conductance (TBC) in backgated tungsten diselenide (WSe2) field-effect transistors, whereas the high-frequency …