Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio Dec 2015

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio

Nebraska Center for Energy Sciences Research: Publications

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case …


Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis Dec 2015

Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon dioxide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze. Traditional model dielectric functions for layered silicon homojunctions, a system with a similar structure to modern transistors, often have correlated parameters during ellipsometric data analysis. Similarly, epitaxial graphene as grown from thermal sublimation of silicon from silicon carbide or through chemical vapor deposition, tend to have model dielectric function parameters that correlate with the optical thickness of the graphene due to …


Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao Dec 2015

Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Micro parts and systems are playing crucial roles in the area of semiconductor, biomedical device, micro fluid devices, automotive, aerospace and so forth. Micro manufacturing is one of the most important technologies in realizing miniaturization. Compared to other micro manufacturing methods, micro-EDM is drawing lots of attention due to its ability to machine complex 3D parts regardless of the hardness of the workpiece material.

Micro-EDM is the cumulative result of numerous single discharges; therefore, it is crucial to understand the single discharge material removal process in micro-EDM. However, due to the stochastic nature and complex process mechanism, micro-EDM, including its …


Microstructure Alone Induced Wetting Transition From Hydrophilic To Hydrophobic On Silicon And Graphene, Henry L. Ems Dec 2015

Microstructure Alone Induced Wetting Transition From Hydrophilic To Hydrophobic On Silicon And Graphene, Henry L. Ems

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, transition from hydrophilic to hydrophobic wetting states for an intrinsically hydrophilic surface (contact angle less than 45 degrees) using only surface microstructuring is presented. The surface microstructures are re-entrant microcavities (inverted trapezoidal microstructures) which promote air entrapment below the water droplet causing a Cassie wetting state as opposed to a Wenzel state where the surface is completely wetted. The microstructures were fabricated on a Silicon-On-Insulator (SOI) wafer through steps of deposition, photolithography, etching, and bonding. Contact angle measurements demonstrated the ability of the microfabricated surfaces to sustain large contact angles above 100°, in comparison to a …


Experimental Investigation And Thermal Modeling On Electro Discharge Drilling Of Pcd, Farnaz Nourbakhsh Dec 2015

Experimental Investigation And Thermal Modeling On Electro Discharge Drilling Of Pcd, Farnaz Nourbakhsh

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This study presents an experimental investigation and finite element simulation of Electro Discharge Drilling (ED-Drilling) of Polycrystalline Diamond (PCD). PCD has many outstanding properties including uniformly high hardness, high wear resistance and strong corrosion which are the main causes of widely using PCD. While PCD has many advantages and an important role in industrial applications, its high level of hardness and wear resistance cause this material to be difficult to form and machine by using traditional machining methods. EDM as a nontraditional machining process is an effective method among other non-traditional methods for PCDs due to its low cost and …


Volatile Condensible Material Deposition In Leo Simulated Environment, Jinya Pu Nov 2015

Volatile Condensible Material Deposition In Leo Simulated Environment, Jinya Pu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Room Temperature Vulcanized (RTV) silicone and compounds are widely used in outer-space for bonding or potting spacecraft components. In geosynchronous equatorial orbit (GEO), the silicone may outgas species which can condense on optically sensitive surfaces and degrade their performance, therefore shortening the lifetime of spacecraft. In low-earth-orbit (LEO), the silicone rubber is subject to an energetic and corrosive environment. Atomic oxygen (AO) and ultraviolet radiation can cause abrasion and degradation of the silicone rubber, cause changes in existing condensed VCM films and affect the properties of VCM films condensing in this atmosphere. Experiments were performed to simulate GEO conditions. In …


Efficiency Enhancement In Solution Processed Organic And Organic-Inorganic Hybrid Perovskite Solar Cells, Zhengguo Xiao Jul 2015

Efficiency Enhancement In Solution Processed Organic And Organic-Inorganic Hybrid Perovskite Solar Cells, Zhengguo Xiao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Solution processed thin film photovoltaic devices are one of the most promising renewable energy sources. Organic solar cells have been intensively studied due to their advantages of light-weight, flexibility and low-cost materials and manufacturing. The organic-inorganic hybrid perovskite materials have recently shown great potential application in solar cells. The PCE increased dramatically from 3.8% in 2009 to a certified efficiency of 20.1% in 2014. In this dissertation, we focus on the efficiency enhancement for solution processed organic and organic-inorganic solar cells.

In Chapter 2, I demonstrated that the crystallinity of the ferroelectric polymer P(VDF-TrFE) at the organic active layer/ electrode …


Fundamental Problems In Porous Materials: Experiments & Computer Simulation, Zhanping Xu Jul 2015

Fundamental Problems In Porous Materials: Experiments & Computer Simulation, Zhanping Xu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 …


Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure And Magnetic Properties, Farhad Reza Golkar-Fard Jul 2015

Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure And Magnetic Properties, Farhad Reza Golkar-Fard

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely …


Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang May 2015

Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.

The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer …


Ultrahigh Density Sub-10 Nm Cobalt Nanowire Arrays: Simulation, Fabrication, And Characterization, Yuan Tian May 2015

Ultrahigh Density Sub-10 Nm Cobalt Nanowire Arrays: Simulation, Fabrication, And Characterization, Yuan Tian

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The simulation, fabrication, and characterization of self-assembled ultrahigh density sub-10nm Co nanowire arrays are presented in this dissertation. The general phase separation nanowire growth simulation was operated based on a modified Ising model. The fabrication process can be summarized as the binary Co-X systems lateral phase separation during physical vapor deposition – the plasma layer deposition with a single alloy Co-X target. The “X” stands for Al or Si. The nanowire fabrication and diameter deduction was achieved by balancing the growth rate and surface diffusivity. For Co-Al binary system, the formed sub-10 nm Co nanowires are of face-centered cubic structure …


Microstructure And Phase Analysis In Mn-Al And Zr-Co Permanent Magnets, Michael J. Lucis Apr 2015

Microstructure And Phase Analysis In Mn-Al And Zr-Co Permanent Magnets, Michael J. Lucis

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In America’s search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the …


Characterization Of Dimethyl Sulfoxide-Treated Wool And Enhancement Of Reactive Wool Dyeing In Non-Aqueous Medium, Luyi Chen, Bijia Wang, Jiangang Chen, Xinhui Ruan, Yiqi Yang Jan 2015

Characterization Of Dimethyl Sulfoxide-Treated Wool And Enhancement Of Reactive Wool Dyeing In Non-Aqueous Medium, Luyi Chen, Bijia Wang, Jiangang Chen, Xinhui Ruan, Yiqi Yang

Department of Textiles, Merchandising, and Fashion Design: Faculty Publications

Wool pretreated with dimethyl sulfoxide (DMSO) was characterized and its dyeing behavior in non-aqueous green solvents was investigated. Reactive dyeing of wool in deep shades is challenging because the mandatory alkaline aftertreatment to match the fastness of mordant dyes inevitably causes damage to wool keratin. The current study showed that the colorfastness-integrity dilemma could be solved by replacing water with organic solvents as the dyeing medium. Covalent fixation is predominantly favored in solvent dyeing so that excellent colorfastness is achievable at any given shade without alkali aftertreatment. Compared with aqueous dyeing, solvent dyeing was found to give 30% higher covalent …


Size Effects In Human Visual Inspection For Micro/Meso Scale Parts, Sri Harsha Kavuri Jan 2015

Size Effects In Human Visual Inspection For Micro/Meso Scale Parts, Sri Harsha Kavuri

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Visual inspection has been a major method of quality control in conventional manufacturing processes for the last fifty years. Utilizing trained human inspectors to perform this visual inspection has been the most effective means of maintaining quality control. Extensive research has been performed to understand the factors that influence the human inspection process.

In the recent years, there has been a significant emphasis on manufacturing at the smaller end of the size-spectrum such as Micro and Meso scale manufacturing. Quality control at becomes a challenging task due to the extremely small sizes. Several automated visual inspection techniques have been proposed …


Influence Of Resonant And Non-Resonant Vibrational Excitation Of Ammonia Molecules In Gallium Nitride Synthesis, Hossein Rabiee Golgir, Yunshen Zhou, Kamran Keramatnejad, Yongfeng Lu Jan 2015

Influence Of Resonant And Non-Resonant Vibrational Excitation Of Ammonia Molecules In Gallium Nitride Synthesis, Hossein Rabiee Golgir, Yunshen Zhou, Kamran Keramatnejad, Yongfeng Lu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Attempts on the selective promotion of gallium nitride (GaN) growth were investigated by deploying laserassisted vibrational excitation of reactant molecules, which deposits energy selectively into specific molecules and activate the molecules towards the selected reaction pathways. Laser-assisted metal organic chemical vapor deposition (LMOCVD) of GaN was studied using a wavelength-tunable CO2 laser. The NH-wagging modes (υ2) of ammonia (NH3) precursor molecules are strongly infrared active and perfectly match the emission line of the CO2 laser at 9.219, 10.350, and 10.719 μm. On- and off-resonance excitations of molecules were performed via tuning the incident laser wavelengths at on-resonant wavelength 9.219 μm …


Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza Jan 2015

Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Railroad transportation is very important for economic growth and effective maintenance is one critical factor for its economic sustainability. The high repetitive forces from a moving railcar induce cyclic stresses that lead to rail bending and potential deterioration due to fatigue crack initiation and propagation. Previous research for prediction of fatigue life has been done under the assumptions of a uniform track bed and a homogeneous rail. However the spatial variation of the track stiffness is expected to increase the maximum stresses in the rail and, therefore, accelerate the fatigue process. The research described in this dissertation is focused on …