Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Missouri University of Science and Technology

Theses/Dissertations

2016

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Multiphase Field Modeling Of The Formation Path Of Delta Hydrides In Zirconium, Jacob Luke Bair Jan 2016

Multiphase Field Modeling Of The Formation Path Of Delta Hydrides In Zirconium, Jacob Luke Bair

Doctoral Dissertations

"Zirconium alloys are commonly used in nuclear fuel rod claddings due to their high ductility, good corrosion resistance, and low neutron absorption cross section. Among the most important weaknesses of zirconium alloys is their affinity for hydrogen, resulting in formation of hydrides in the cladding, and leading to embrittlement and mechanical failure. Despite numerous studies on hydride precipitation in zirconium alloys, the nucleation and formation path of stable δ hydrides in α zirconium matrix are not yet fully understood.

In this Ph.D. research project, two novel quantitative phase-field models were developed and utilized to advance our understanding of mechanisms of …


Phase Field Modeling Of Electrodeposition Process In Lithium Metal Batteries, Nihal Acharya Jan 2016

Phase Field Modeling Of Electrodeposition Process In Lithium Metal Batteries, Nihal Acharya

Masters Theses

"One of the main weaknesses in long term performance of conventional lithium batteries is the growth of lithium microstructures on the electrode surface due to an electrochemical process, which can eventually lead to failure of these batteries. Suppressing this microstructure growth is a key in developing new generations of lithium metal batteries (LMBs). In this study, a two-dimensional (2D) phase field model is constructed to understand and determine the parameters controlling formation and evolution of microstructures in LMBs. A Ginzburg-Landau free energy functional, which is a function of concentration of Li+ and applied voltage, and a system consisting of …


Material Properties Affecting The Penetration Of Metal Targets By Copper Linear Shaped Charges, Kevin Lee Phelps Jan 2016

Material Properties Affecting The Penetration Of Metal Targets By Copper Linear Shaped Charges, Kevin Lee Phelps

Masters Theses

"A linear shaped charge (LSC) is an explosive device used in demolition, aerospace, and in other applications that require the cutting of metal. Users of LSC's typically know the size of shaped charge needed to cut their target but commonly encounter previously untested materials. The motivation for this thesis is to provide an understanding as to what target material properties are good indicators of cutting performance so the selection of LSC can be more efficient. The author found that penetration theories for other types shaped charges were insufficient for the LSC, possibly because of the relatively slow projectile created by …


Thermal Characterization Of Phase Change Materials For Thermal Energy Storage, Rami Mohammad Reda Saeed Jan 2016

Thermal Characterization Of Phase Change Materials For Thermal Energy Storage, Rami Mohammad Reda Saeed

Masters Theses

"The study provides a valuable and useful database for Phase Change Materials (PCMs) for Thermal Energy Storage (TES) applications. Only a few existing studies have provided an overall investigation of thermophysical properties of PCMs in this detailed manner. Several organic PCMs, namely Myristic acid, Capric Acid, Lauryl Alcohol, Palmitic acid and Lauric acid, have been characterized after being carefully selected to cover wide range of TES applications. Insights and information gained from this work will be applied toward the design and modelling of many low temperature thermal energy storage applications. The study experimentally investigated uncertainty of thermal characterization of PCMs …


Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan Jan 2016

Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan

Masters Theses

"Implantable biomedical devices have a high potential to revolutionize health care technologies in near future. Implantable devices can be classified as permanent prosthetic devices such as pacemakers or nerve stimulants and temporary devices for intermediate monitoring and control scenario which are still in research phase. In contrast to permanent device, temporary implants lose functionality and become unnecessary after intended operational lifetime which may pose serious electromagnetic and biomedical safety concern, latent complications at the implanted sites and possible ethical issues if not removed from body by an additional surgical operation.

The first paper of this thesis focuses on exploring the …


Development Of Implants Composed Of Bioactive Materials For Bone Repair, Wei Xiao Jan 2016

Development Of Implants Composed Of Bioactive Materials For Bone Repair, Wei Xiao

Doctoral Dissertations

"The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with ~12 wt. % of carbonate showed significantly higher …


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …


Nanostructured Materials Prepared By Atomic Layer Deposition For Catalysis And Lithium-Ion Battery Applications, Rajankumar Patel Jan 2016

Nanostructured Materials Prepared By Atomic Layer Deposition For Catalysis And Lithium-Ion Battery Applications, Rajankumar Patel

Doctoral Dissertations

"Atomic/molecular layer deposition (ALD/MLD) has emerged as an important technique for depositing thin films in both scientific research and industrial applications. In this dissertation, ALD/MLD was used to create novel nanostructures for two different applications, catalysis and lithium-ion batteries.

MLD was used to prepare ultra-thin dense hybrid organic/inorganic polymer films. Oxidizing the hybrid films removed the organic components and produced the desired nanoporous films. Both porous alumina and titania films can be prepared by such a way. A novel nanostructured catalyst (Pt/SiO2) with an ultra-thin porous alumina shell obtained from the thermal decomposition of an aluminium alkoxide film …


Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan Jan 2016

Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan

Masters Theses

"Zinc is an essential 'trace element' that supports immune systems, and is required for DNA synthesis, cell division, and protein synthesis. Zinc nanoparticles (Zn NP) has antibacterial properties and potential to be used in biodegradable printed electronics devices. The research presented here is about the synthesis of Zn NP and their potential use in transient electronics devices. In Paper 1, a technique of room temperature synthesis of Zn NP is reported using ball milling. Controlled amount of PVP was mixed in the solvent to stabilize the Zn particles and minimize cold welding during milling. The size of the produced Zn …


Carbon Transfer From Magnesia-Graphite Ladle Refractories To Ultra-Low Carbon Steel, Andrew Arthur Russo Jan 2016

Carbon Transfer From Magnesia-Graphite Ladle Refractories To Ultra-Low Carbon Steel, Andrew Arthur Russo

Masters Theses

"Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory.

Laboratory dip tests were performed in a vacuum induction furnace under …


A Study On Non-Metallic Inclusions In Foundry Steel Process, Marc Leonard Harris Jan 2016

A Study On Non-Metallic Inclusions In Foundry Steel Process, Marc Leonard Harris

Masters Theses

"The effects of sample area and automated SEM/EDS feature analysis parameters (step size, magnification and threshold) on nonmetallic inclusion characterization results has been investigated and optimized. A post-processing program was developed to automatically determine average inclusion chemistry, total element concentrations within inclusions, and for generating joint ternary diagrams with size visualization for representing nonmetallic inclusion populations. Using these tools the evolution of nonmetallic inclusions was examined for 4320 steel at a participating industrial steel foundry. The steel was sampled throughout electric arc furnace melting through ladle refining to the final casting where an in-mold sampling procedure was developed to procure …


Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky Jan 2016

Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky

Masters Theses

"Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction …


Modeling And Evaluation Of Moisture Diffusion In Polymer Composite Materials, Zhen Huo Jan 2016

Modeling And Evaluation Of Moisture Diffusion In Polymer Composite Materials, Zhen Huo

Doctoral Dissertations

"Fiber-reinforced polymer composites have extensive applications due to their high specific strength, improved product performance, low maintenance and design flexibility. However, moisture absorbed by polymer composites during the service life plays a detrimental role in both the integrity and durability of composite structure. It is essential to understand the moisture diffusion behavior and induced damage in polymer matrix composites under varying hygrothermal conditions. In Part I, the moisture diffusion characteristics in hybrid composites using moisture concentration-dependent diffusion method have been investigated. Also, a multi-stage diffusion model was proposed to explain the deviation of moisture diffusion behavior for sandwich composites from …


Synthesis Of Radioactive Nanostructures In A Research Nuclear Reactor, Maria Camila Garcia Toro Jan 2016

Synthesis Of Radioactive Nanostructures In A Research Nuclear Reactor, Maria Camila Garcia Toro

Masters Theses

In this work, the synthesis of radioactive nanostructures by water radiolysis was studied. The irradiation processes were done in the Missouri University of Science and Technology research nuclear reactor (MSTR).

Radioactive gold nanoparticles (AuNPs) were synthesized from aqueous solutions containing the metal salt precursors by radiolysis of water. Seven different samples were irradiated at 200kW of thermal power for 0.5, 1, 3, 5, 10, 30, and 60 minutes. The average sizes of the obtained nanoparticles ranged from 3 nm to 400 nm, it was found that the particle size decreased with the irradiation time. Some agglomerations of particles were found …


Computational Fluid Dynamics (Cfd) Simulations Of Molten Steel Flow Patterns And Particle-Wall Adhesion In Continuous Casting Of Steels, Mahdi Mohammadi-Ghaleni Jan 2016

Computational Fluid Dynamics (Cfd) Simulations Of Molten Steel Flow Patterns And Particle-Wall Adhesion In Continuous Casting Of Steels, Mahdi Mohammadi-Ghaleni

Masters Theses

"In this research, the measurements of clog deposit thickness on the interior surfaces of a continuous casting nozzle were compared with Computational Fluid Dynamics (CFD) predictions of melt flow patterns and particle-wall interactions to identify the mechanisms of nozzle clogging. A hybrid turbulent approach, Detached Eddy Simulation (DES), was configured to simulate both turbulent structures and particle-wall interactions inside the nozzle accurately. For experimental measurements of nozzle clogging, a nozzle received from industry was encased in epoxy and carefully sectioned to allow measurement of the deposit thickness on the internal surfaces of the nozzle. CFD simulations of melt flow patterns …


Microwave Material Characterization Of Alkali-Silica Reaction (Asr) Gel In Cementitious Materials, Ashkan Hashemi Jan 2016

Microwave Material Characterization Of Alkali-Silica Reaction (Asr) Gel In Cementitious Materials, Ashkan Hashemi

Doctoral Dissertations

"Since alkali-silica reaction (ASR) was recognized as a durability challenge in cement-based materials over 70 years ago, numerous methods have been utilized to prevent, detect, and mitigate this issue. However, quantifying the amount of produced ASR byproducts (i.e., ASR gel) in-service is still of great interest in the infrastructure industry. The overarching objective of this dissertation is to bring a new understanding to the fundamentals of ASR formation from a microwave dielectric property characterization point-of-view, and more importantly, to investigate the potential for devising a microwave nondestructive testing approach for ASR gel detection and evaluation. To this end, a comprehensive …


Synthesis And Functionalization Of A Triaryldiamine-Base Photoconductive/Photorefractive Composite, And Its Application To Aberrated Image Restoration, Yichen Liang Jan 2016

Synthesis And Functionalization Of A Triaryldiamine-Base Photoconductive/Photorefractive Composite, And Its Application To Aberrated Image Restoration, Yichen Liang

Doctoral Dissertations

"Organic photorefractive (PR) composites have recently emerged as an important class of materials for applications including high-density data storage, optical communication, and biomedical imaging. In an effort to further improve their performance, this study focused on the utilization of functionalized semiconductor nanocrystals to photosensitize triaryamine (TPD)-based PR composites, as well as the application of TPD-based PR composites in the restoration of aberrated optical information. A novel approach to functionalize CdSe quantum dot (QCdSe) was firstly introduced where the sulfonated triarydiamine (STPD) was used as charge-transporting ligand to passivate QCdSe. TPD-based photoconductive and PR composites were photosensitized with the STPD-passivated QCdSe …


On The Spheroidal Graphite Growth And The Austenite Solidification In Ductile Irons, Jingjing Qing Jan 2016

On The Spheroidal Graphite Growth And The Austenite Solidification In Ductile Irons, Jingjing Qing

Doctoral Dissertations

"Evolutions of austenite and nodular/spheroidal graphite particles during solidifications of ductile irons were experimentally investigated. Spheroidal graphite particle and austenite dendrite were found nucleated independently in liquid. Austenite dendrite engulfed the spheroidal graphite particles after contact and an austenite shell formed around a spheroidal graphite particle. The graphite diameter at which the austenite shell closed around nodule was determined. Statistically determined graphite size distributions indicated multiple graphite nucleation events during solidification.

Structures in a graphite nodule varied depending on the growth stages of the nodule in ductile iron. Curved graphene layers appearing as faceted growth ledges swept circumferentially around the …