Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Enhanced Electrochemical Performance Of Li-Ion Battery Cathodes By Atomic Layer Deposition, Yan Gao Jan 2020

Enhanced Electrochemical Performance Of Li-Ion Battery Cathodes By Atomic Layer Deposition, Yan Gao

Doctoral Dissertations

”Li-ion battery now plays an irreplaceable role in supplying green and convenient energy. In this work, atomic layer deposition (ALD) was used to modify Li-ion battery cathode particles for performance enhancement.

An ultrathin and conductive CeO2 ALD film was deposited on Li-rich layered cathode particles, of which the specific capacity and cyclic stability were significantly improved. On the same cathode particles, FeOx ALD and post-annealing resulted in a stable and conductive surface spinel phase to improve the performance.

Synergetic TiN coating and Ti doping were performed on a LiFePO4 (LFP) cathode and extended its cycle life. The …


Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook Jan 2020

Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook

Doctoral Dissertations

”The hydration of multi-phase ordinary Portland cement (OPC) and its pure phase derivatives, such as tricalcium silicate (C3S) and belite (ß-C2S), are studied in the context varying process parameters -- for instance, variable water content, water activity, superplasticizer structure and dose, and mineral additive type and particle size. These parameters are studied by means of physical experiments and numerical/computational techniques, such as: thermodynamic estimations; numerical kinetic-based modelling; and artificial intelligence techniques like machine learning (ML) models. In the past decade, numerical kinetic modeling has greatly improved in terms of fitting experimental, isothermal calorimetry to kinetic-based modelling …


Thermodynamic Investigations Of Pure And Blended Cement Mixtures, Jonathan Lapeyre Jan 2020

Thermodynamic Investigations Of Pure And Blended Cement Mixtures, Jonathan Lapeyre

Doctoral Dissertations

” This research is made up of several studies. The first study focused on understanding the reaction kinetics of Ca3SiO5 and metakaolin (MK) mixtures compared to Ca3SiO5 and silica fume (SF) mixtures. It was shown that MK was a more effective additive than SF at small replacement levels (i.e. ≥ 10% by mass) while higher replacement levels of MK became a detriment due to excess (Al(OH)4¯) ions preventing the nucleation and growth of C-S-H. In a follow-up study where the MK particle size distribution (PSD) was modified, similar effects were observed but …


Understanding The Deformation Mechanisms In Ni-Based Superalloys With Using Crystal Plasticity Finite Element Method, Tianju Chen Jan 2020

Understanding The Deformation Mechanisms In Ni-Based Superalloys With Using Crystal Plasticity Finite Element Method, Tianju Chen

Doctoral Dissertations

“Ni-based superalloy is considered as a good candidate due to its excellent resistance to elevated temperature deformation for long term period application. Understanding the deformation and failure mechanisms of Ni-Based superalloys is very helpful for providing design guidelines for processing Ni-based superalloys. Experimental characterization indicates that the deformation mechanisms of Ni based superalloy is strongly microstructure dependent. Besides, damage transform from the void nucleation to the macro cracks by voids growth leading to the failure of the Ni-based superalloys are also showing strong microstructure sensitivity. Therefore, this work focuses on the prediction and comprehension of the deformation and void growth …


Removal Of Non-Metallic Inclusions From Molten Steel By Ceramic Foam Filtration, Soumava Chakraborty Jan 2020

Removal Of Non-Metallic Inclusions From Molten Steel By Ceramic Foam Filtration, Soumava Chakraborty

Doctoral Dissertations

”Ceramic filters are routinely used in steel foundries to remove non-metallic inclusions from steel melt. Removal efficiency for both solid and liquid inclusions by magnesia-stabilized zirconia foam filters (10ppi) were evaluated and distribution of the captured inclusions through the filter thickness was also investigated. A mold design was developed using a commercial computational fluid dynamics software package to produce two castings that fill simultaneously, one with a filter and the other without a filter, from a single ladle pour, while also matching the fill rates and avoid turbulence and reoxidation during pouring. An industrial-scale experiment was also performed to investigate …


Development Of Lightweight Materials By Meso- And Microstructure Control, Myranda Shea Spratt Jan 2020

Development Of Lightweight Materials By Meso- And Microstructure Control, Myranda Shea Spratt

Doctoral Dissertations

”In this work, two lightweight structures – lattice structures and metal matrix syntactic foams (MMSF) – were studied. Honeycomb lattices were manufactured by powder bed selective laser melting (SLM) from 304L stainless steel. The wall thicknesses of these structures ranged from 0.2 to 0.5 mm. Surface roughness was the primary cause of dimensional mismatch between the expected and as-built structures with an average wall thickness increase of 0.12 mm. The strength of the honeycombs increased with increasing wall thickness. A feature of the SLM microstructure, the melt pool boundary, was also studied as a part of this work. 3D models …


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …