Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Boise State University

2010

Computer Science

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Programmable Periodicity Of Quantum Dot Arrays With Dna Origami Nanotubes, Hieu Bui, Craig Onodera, Carson Kidwell, Yerpeng Tan, Elton Graugnard, Wan Kuang, Jeunghoon Lee, William B. Knowlton, Bernard Yurke, William L. Hughes Sep 2010

Programmable Periodicity Of Quantum Dot Arrays With Dna Origami Nanotubes, Hieu Bui, Craig Onodera, Carson Kidwell, Yerpeng Tan, Elton Graugnard, Wan Kuang, Jeunghoon Lee, William B. Knowlton, Bernard Yurke, William L. Hughes

Materials Science and Engineering Faculty Publications and Presentations

To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity.


Limitations Of Poole–Frenkel Conduction In Bilayer Hfo2/Sio2 Mos Devices, Richard G. Southwick Iii, Justin Reed, Christopher Buu, Ross Butler, Gennadi Bersuker, William B. Knowlton Jun 2010

Limitations Of Poole–Frenkel Conduction In Bilayer Hfo2/Sio2 Mos Devices, Richard G. Southwick Iii, Justin Reed, Christopher Buu, Ross Butler, Gennadi Bersuker, William B. Knowlton

Materials Science and Engineering Faculty Publications and Presentations

The gate leakage current of metal–oxide– semiconductors (MOSs) composed of hafnium oxide (HfO2) exhibits temperature dependence, which is usually attributed to the standard Poole–Frenkel (P–F) transport model. However, the reported magnitudes of the trap barrier height vary significantly. This paper explores the fundamental challenges associated with applying the P–F model to describe transport in HfO2/SiO2 bilayers in n/p MOS field-effect transistors composed of 3- and 5-nm HfO2 on 1.1-nm SiO2 dielectric stacks. The extracted P–F trap barrier height is shown to be dependent on several variables including the following: the temperature range, method …


Recent Advances In High Density Area Array Interconnect Bonding For 3d Integration, J. M. Lannon, J., C. Gregory, M. Lueck, A. Huffman, D. Temple, Amy J. Moll, William B. Knowlton Apr 2010

Recent Advances In High Density Area Array Interconnect Bonding For 3d Integration, J. M. Lannon, J., C. Gregory, M. Lueck, A. Huffman, D. Temple, Amy J. Moll, William B. Knowlton

Materials Science and Engineering Faculty Publications and Presentations

The demand for more complex and multifunctional micro systems with enhanced performance characteristics for military applications is driving the electronics industry toward the use of best-of-breed materials and device technologies. Threedimensional (3-D) integration provides a way to build complex microsystems through bonding and interconnection of individually optimized device layers without compromising system performance and fabrication yield. Bonding of device layers can be achieved through polymer bonding or metal-metal interconnect bonding with a number of metalmetal systems. RTI has been investigating and characterizing Cu-Cu and CulSn-Cu processes for high density area array imaging applications, demonstrating high yield bonding between sub-I5 11m …